scispace - formally typeset
Search or ask a question
JournalISSN: 1598-9623

Metals and Materials International 

Springer Science+Business Media
About: Metals and Materials International is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Microstructure & Alloy. It has an ISSN identifier of 1598-9623. Over the lifetime, 3568 publications have been published receiving 36873 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the research and development status of magnesium alloy, with more attention to the methodologies and technologies adopted to improve the properties of AZ91 alloy, and addressed the key issues hindering the applications of magnesium alloys for structural and biomedical applications.
Abstract: The work reviews the research and development status of magnesium alloy, with more attention to the methodologies and technologies adopted to improve the properties of AZ91 alloy. The drive force of utilizing magnesium alloys for automotive and biomedical application is light weightiness and biocompatibility respectively. However, the softness and high activity of magnesium alloys result in high wear and high corrosion rate respectively. One of the essential factors influencing the properties of magnesium alloy is its microstructure. Consequently, the grain size, morphology and distribution of phase constituents influence the properties of magnesium alloys. The modification of microstructure through processing route (hot working and cold working), heat treatment, and alloying elements improves the mechanical, corrosion, biocompatible, and tribological properties of magnesium alloys. Besides microstructural modification processes, addition of reinforcements, and coatings improves the properties of magnesium alloys. This article emphasis on the recent research on the technologies to improve the microstructure, hardness, tensile strength, ductility, yield strength, wear resistance, and corrosion resistance of magnesium alloy AZ91. Moreover, this review addresses the key issues hindering the applications of magnesium alloys for structural and biomedical applications.

142 citations

Journal ArticleDOI
TL;DR: Recently, significant progress in enhancing glass forming ability (GFA) has led to the fabrication of bulk metallic glasses (BMGs) having potential for application as structural and functional materials.
Abstract: To overcome some of the limits of existing metallic alloys, a new alloy design concept has been introduced recently in order to control the crystallinity, i.e. to utilize crystalline, quasicrystalline, and amorphous structures. In particular, bulk metallic glasses (BMGs) receive great attention because of their unique properties due to their different atomic configuration. Recently, significant progress in enhancing glass forming ability (GFA) has led to the fabrication of BMGs having potential for application as structural and functional materials. Moreover, successful design of BMG matrix composite microstructure suggests that the plasticity of BMGs can be controlled properly. In this review article, we introduce recent research results on the design of BMGs with high GFA and on the enhancement of plasticity in metallic glass matrix composites.

123 citations

Journal ArticleDOI
TL;DR: In this article, the effects of oxygen on the mechanical properties and the lattice strain of commercial pure CP Ti and Ti-6Al-4V alloys are discussed in terms of the Vickers hardness, tensile strength and elongation.
Abstract: The effects of oxygen on the mechanical properties and the lattice strain of commercial pure CP) Ti and Ti-6Al-4V alloys are discussed here in terms of the Vickers hardness, tensile strength and elongation. The Vickers hardness and tensile strength of the CP Ti and the Ti-6Al-4V alloys increased with an increase in the oxygen concentration. On the other hand, the elongation of the CP Ti decreased considerably as the oxygen concentration increased, while that of the Ti-6Al-4V alloys gradually decreased as the oxygen concentration increased. Thus, the oxygen concentration has a greater effect on the mechanical properties of CP Ti compared to its effects on the Ti-6Al-4V alloy. This can be explained in terms of the difference in the solid solution effect of oxygen between the CP Ti and the Ti-6Al-4V alloy. Where, the mechanical properties of Ti-6Al-4V alloy were previously affected by an earlier lattice expansion caused by an increment in the c/a ratio of the Ti-6Al-4V during the Al and V alloying process.

122 citations

Journal ArticleDOI
TL;DR: In this article, a review of the thermal spraying techniques and current advancements in materials, mechanical properties, understand the high temperature performance, residual stress in the coating, understanding the failure mechanisms and life prediction models for coatings is presented.
Abstract: Thermal barrier coatings (TBCs) have seen considerable advancement since the initial testing and development of thermal spray coating. Thermal barrier coatings are currently been utilized in various engineering areas which include internal combustion engines, gas turbine blades of jet engines, pyrochemical reprocessing units and many more. The development of new materials, deposition techniques is targeted at improving the life of the underlying substrate. Hence, the performance of the coating plays a vital role in improving the life of substrate. The scope for advancement in thermal barrier coatings is very high and continuous efforts are being made to produce improved and durable coatings. Thermal barrier coatings have the potential to address long term and short-term problems in gas turbine, internal combustion and power generation industry. The study of thermal barrier coating material, performance and life estimation is a critical factor that should be understood to introduce any advancement. The present review gives an overview of the thermal spraying techniques and current advancements in materials, mechanical properties, understanding the high temperature performance, residual stress in the coating, understanding the failure mechanisms and life prediction models for coatings.

115 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of multilayer graphene content on the green and sintered properties of the multi-layer graphene/Copper nanocomposites was investigated.
Abstract: In this study, the influence of multilayer graphene content on the green and sintered properties of the multilayer graphene/Copper nanocomposites was investigated. Flake powder metallurgy, as a new production method, was employed to prepare the multilayer graphene reinforced copper matrix nanocomposites. Results showed that the increase in agglomeration content inhibited particle-particle contact during the sintering process and therefore sintered density decreased with increasing the multilayer graphene content. The green density of 8.46 g/cm3 was found for the monolithic Cu sample, which was 16.4% higher than that of the 5 wt% MLG/Copper nanocomposites. The high conductivity value (78.5 IACs) was obtained with 0.5 wt% the multilayer graphene reinforced nanocomposites. The electrical conductivity of sintered 5 wt% the multilayer graphene/Copper nanocomposites was 61.48 IACs. When the amount of the multilayer graphene particles as higher than 3 wt%, the decreasing rate in hardness significantly increased. The decreasing rate in the hardness of the multilayer graphene/Copper nanocomposites can be attributed to decrease in density and the non-homogeneous distribution of multilayer graphene particulates in Cu matrix.

105 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023135
2022238
2021551
2020241
2019155
2018149