scispace - formally typeset
Search or ask a question

Showing papers in "Sensors in 2011"


Journal ArticleDOI
28 Feb 2011-Sensors
TL;DR: An overview of the fundamentals and main variables of eddy current testing is included, and the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems are described.
Abstract: Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.

683 citations


Journal ArticleDOI
Alamusi1, Ning Hu1, Hisao Fukunaga, Satoshi Atobe, Yaolu Liu1, Jinhua Li1 
11 Nov 2011-Sensors
TL;DR: This article reviews the recent significant developments in the field of highly sensitive strain sensors made from CNT/polymer nanocomposites and focuses on the following two topics: electrical conductivity and piezoresistivity of CNT/.
Abstract: In recent years, nanocomposites based on various nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a realistic alternative to conventional smart materials, largely due to their superior electrical properties. Great interest has been generated in building highly sensitive strain sensors with these new nanocomposites. This article reviews the recent significant developments in the field of highly sensitive strain sensors made from CNT/polymer nanocomposites. We focus on the following two topics: electrical conductivity and piezoresistivity of CNT/polymer nanocomposites, and the relationship between them by considering the internal conductive network formed by CNTs, tunneling effect, aspect ratio and piezoresistivity of CNTs themselves, etc. Many recent experimental, theoretical and numerical studies in this field are described in detail to uncover the working mechanisms of this new type of strain sensors and to demonstrate some possible key factors for improving the sensor sensitivity.

537 citations


Journal ArticleDOI
07 Apr 2011-Sensors
TL;DR: The progress on improving sensing performance parameters like spatial resolution, sensing length limitation and simultaneous temperature and strain measurement is reviewed.
Abstract: Brillouin scattering in optical fiber describes the interaction of an electro-magnetic field (photon) with a characteristic density variation of the fiber. When the electric field amplitude of an optical beam (so-called pump wave), and another wave is introduced at the downshifted Brillouin frequency (namely Stokes wave), the beating between the pump and Stokes waves creates a modified density change via the electrostriction effect, resulting in so-called the stimulated Brillouin scattering. The density variation is associated with a mechanical acoustic wave; and it may be affected by local temperature, strain, and vibration which induce changes in the fiber effective refractive index and sound velocity. Through the measurement of the static or dynamic changes in Brillouin frequency along the fiber one can realize a distributed fiber sensor for local temperature, strain and vibration over tens or hundreds of kilometers. This paper reviews the progress on improving sensing performance parameters like spatial resolution, sensing length limitation and simultaneous temperature and strain measurement. These kinds of sensors can be used in civil structural monitoring of pipelines, bridges, dams, and railroads for disaster prevention. Analogous to the static Bragg grating, one can write a moving Brillouin grating in fibers, with the lifetime of the acoustic wave. The length of the Brillouin grating can be controlled by the writing pulses at any position in fibers. Such gratings can be used to measure changes in birefringence, which is an important parameter in fiber communications. Applications for this kind of sensor can be found in aerospace, material processing and fine structures.

491 citations


Journal ArticleDOI
01 Mar 2011-Sensors
TL;DR: The recent developments of the new generation of the Sensor Web Enablement specification framework are illustrated and related to other emerging concepts such as the Web of Things and point out challenges and resulting future work topics for research on Sensor Web enablement.
Abstract: Many sensor networks have been deployed to monitor Earth’s environment, and more will follow in the future. Environmental sensors have improved continuously by becoming smaller, cheaper, and more intelligent. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not straightforward. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. The concept of the Sensor Web reflects such a kind of infrastructure for sharing, finding, and accessing sensors and their data across different applications. It hides the heterogeneous sensor hardware and communication protocols from the applications built on top of it. The Sensor Web Enablement initiative of the Open Geospatial Consortium standardizes web service interfaces and data encodings which can be used as building blocks for a Sensor Web. This article illustrates and analyzes the recent developments of the new generation of the Sensor Web Enablement specification framework. Further, we relate the Sensor Web to other emerging concepts such as the Web of Things and point out challenges and resulting future work topics for research on Sensor Web Enablement.

469 citations


Journal ArticleDOI
26 May 2011-Sensors
TL;DR: The important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care is explained.
Abstract: Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper.

461 citations


Journal ArticleDOI
08 Jul 2011-Sensors
TL;DR: It is found that these new Sentinel-2 bands significantly improve the accuracy of Ch estimation, and the recently developed “Normalized Area Over reflectance Curve” (NAOC), an index that derives Ch from hyperspectral data, was studied on its compatibility with simulated Sentinel- 2 data.
Abstract: ESA’s upcoming satellite Sentinel-2 will provide Earth images of high spatial, spectral and temporal resolution and aims to ensure continuity for Landsat and SPOT observations. In comparison to the latter sensors, Sentinel-2 incorporates three new spectral bands in the red-edge region, which are centered at 705, 740 and 783 nm. This study addresses the importance of these new bands for the retrieval and monitoring of two important biophysical parameters: green leaf area index (LAI) and chlorophyll content (Ch). With data from several ESA field campaigns over agricultural sites (SPARC, AgriSAR, CEFLES2) we have evaluated the efficacy of two empirical methods that specifically make use of the new Sentinel-2 bands. First, it was shown that LAI can be derived from a generic normalized difference index (NDI) using hyperspectral data, with 674 nm with 712 nm as best performing bands. These bands are positioned closely to the Sentinel-2 B4 (665 nm) and the new red-edge B5 (705 nm) band. The method has been applied to simulated Sentinel-2 data. The resulting green LAI map was validated against field data of various crop types, thereby spanning a LAI between 0 and 6, and yielded a RMSE of 0.6. Second, the recently developed “Normalized Area Over reflectance Curve” (NAOC), an index that derives Ch from hyperspectral data, was studied on its compatibility with simulated Sentinel-2 data. This index integrates the reflectance curve between 643 and 795 nm, thereby including the new Sentinel-2 bands in the red-edge region. We found that these new bands significantly improve the accuracy of Ch estimation. Both methods emphasize the importance of red-edge bands for operational estimation of biophysical parameters from Sentinel-2.

418 citations


Journal ArticleDOI
02 May 2011-Sensors
TL;DR: This review will concentrate on applications of e-nose and e-tongue technology for edible products and pharmaceutical uses.
Abstract: The electronic nose (e-nose) is designed to crudely mimic the mammalian nose in that most contain sensors that non-selectively interact with odor molecules to produce some sort of signal that is then sent to a computer that uses multivariate statistics to determine patterns in the data. This pattern recognition is used to determine that one sample is similar or different from another based on headspace volatiles. There are different types of e-nose sensors including organic polymers, metal oxides, quartz crystal microbalance and even gas-chromatography (GC) or combined with mass spectroscopy (MS) can be used in a non-selective manner using chemical mass or patterns from a short GC column as an e-nose or "Z" nose. The electronic tongue reacts similarly to non-volatile compounds in a liquid. This review will concentrate on applications of e-nose and e-tongue technology for edible products and pharmaceutical uses.

411 citations


Journal ArticleDOI
27 Jan 2011-Sensors
TL;DR: In this review, SPR sensors (from typical Kretschmann prism configurations to fiber sensor schemes) with micro- or nano-structures for local light field enhancement, extraordinary optical transmission, interference of surface Plasmon waves, plasmonic cavities, etc are discussed.
Abstract: The performance of bio-chemical sensing devices has been greatly improved by the development of surface plasmon resonance (SPR) based sensors. Advancements in micro- and nano-fabrication technologies have led to a variety of structures in SPR sensing systems being proposed. In this review, SPR sensors (from typical Kretschmann prism configurations to fiber sensor schemes) with micro- or nano-structures for local light field enhancement, extraordinary optical transmission, interference of surface plasmon waves, plasmonic cavities, etc. are discussed. We summarize and compare their performances and present guidelines for the design of SPR sensors.

410 citations


Journal ArticleDOI
09 May 2011-Sensors
TL;DR: The unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube is highlighted and is expected to lead to a number of novel imaging device applications that would be quantum noise limited.
Abstract: In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs). We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se) has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE). Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF) and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI2 and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the HARP has been recently demonstrated with excellent avalanche gains; the latter is expected to lead to a number of novel imaging device applications that would be quantum noise limited. While passive pixel sensors use one TFT (thin film transistor) as a switch at the pixel, active pixel sensors (APSs) have two or more transistors and provide gain at the pixel level. The advantages of APS based x-ray imagers are also discussed with examples.

375 citations


Journal ArticleDOI
22 Dec 2011-Sensors
TL;DR: The security and privacy issues in healthcare application using WMSNs are discussed, some popular healthcare projects using wireless medical sensor networks are highlighted, and their security is discussed, and a summary of open security research issues that need to be explored for future healthcare applications using W MSNs are explored.
Abstract: Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs.

363 citations


Journal ArticleDOI
19 Jan 2011-Sensors
TL;DR: This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry.
Abstract: The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry.

Journal ArticleDOI
02 May 2011-Sensors
TL;DR: According to the analysis of security of the ECC-based protocol, it is suitable for applications with higher security requirements and is shown to be suitable for higher security WSNs.
Abstract: User authentication is a crucial service in wireless sensor networks (WSNs) that is becoming increasingly common in WSNs because wireless sensor nodes are typically deployed in an unattended environment, leaving them open to possible hostile network attack. Because wireless sensor nodes are limited in computing power, data storage and communication capabilities, any user authentication protocol must be designed to operate efficiently in a resource constrained environment. In this paper, we review several proposed WSN user authentication protocols, with a detailed review of the M.L Das protocol and a cryptanalysis of Das’ protocol that shows several security weaknesses. Furthermore, this paper proposes an ECC-based user authentication protocol that resolves these weaknesses. According to our analysis of security of the ECC-based protocol, it is suitable for applications with higher security requirements. Finally, we present a comparison of security, computation, and communication costs and performances for the proposed protocols. The ECC-based protocol is shown to be suitable for higher security WSNs.

Journal ArticleDOI
21 Nov 2011-Sensors
TL;DR: This paper indicates that nano-scale detections can be realized by using the shift of resonance wavelength of LSPR in response to the refractive index change, and presents guidelines for designing specific nanostructure with regard to wavelength range and target sensing materials.
Abstract: The optical properties of various nanostructures have been widely adopted for biological detection, from DNA sequencing to nano-scale single molecule biological function measurements. In particular, by employing localized surface plasmon resonance (LSPR), we can expect distinguished sensing performance with high sensitivity and resolution. This indicates that nano-scale detections can be realized by using the shift of resonance wavelength of LSPR in response to the refractive index change. In this paper, we overview various plasmonic nanostructures as potential sensing components. The qualitative descriptions of plasmonic nanostructures are supported by the physical phenomena such as plasmonic hybridization and Fano resonance. We present guidelines for designing specific nanostructures with regard to wavelength range and target sensing materials.

Journal ArticleDOI
12 Oct 2011-Sensors
TL;DR: Results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2.5, and the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement.
Abstract: This paper presents a road distress detection system involving the phases needed to properly deal with fully automatic road distress assessment. A vehicle equipped with line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital images that will be further processed to identify road cracks. Pre-processing is firstly carried out to both smooth the texture and enhance the linear features. Non-crack features detection is then applied to mask areas of the images with joints, sealed cracks and white painting, that usually generate false positive cracking. A seed-based approach is proposed to deal with road crack detection, combining Multiple Directional Non-Minimum Suppression (MDNMS) with a symmetry check. Seeds are linked by computing the paths with the lowest cost that meet the symmetry restrictions. The whole detection process involves the use of several parameters. A correct setting becomes essential to get optimal results without manual intervention. A fully automatic approach by means of a linear SVM-based classifier ensemble able to distinguish between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal feature vector includes different texture-based features. The parameters are then tuned depending on the output provided by the classifier. Regarding non-crack features detection, results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2. In addition, the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement.

Journal ArticleDOI
26 Jan 2011-Sensors
TL;DR: This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts and gives useful recipes for their actual implementation.
Abstract: User-worn sensing units composed of inertial and magnetic sensors are becoming increasingly popular in various domains, including biomedical engineering, robotics, virtual reality, where they can also be applied for real-time tracking of the orientation of human body parts in the three-dimensional (3D) space. Although they are a promising choice as wearable sensors under many respects, the inertial and magnetic sensors currently in use offer measuring performance that are critical in order to achieve and maintain accurate 3D-orientation estimates, anytime and anywhere. This paper reviews the main sensor fusion and filtering techniques proposed for accurate inertial/magnetic orientation tracking of human body parts; it also gives useful recipes for their actual implementation.

Journal ArticleDOI
25 Mar 2011-Sensors
TL;DR: This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies and recommendations on the implementation and integration of FBG sensors into an SHM system are provided.
Abstract: Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided.

Journal ArticleDOI
30 Nov 2011-Sensors
TL;DR: Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP).
Abstract: In this paper, a personal verification method using finger vein is presented Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP)

Journal ArticleDOI
16 Dec 2011-Sensors
TL;DR: The fabrication and testing of two configurations of optical sensor systems based on Surface Plasmon Resonance at the interface of a liquid sample and sandwiched structures realized starting from the exposed core of a Plastic Optical Fiber are reported.
Abstract: This paper reports the fabrication and testing of two configurations of optical sensor systems based on Surface Plasmon Resonance (SPR) at the interface of a liquid sample and sandwiched structures realized starting from the exposed core of a Plastic Optical Fiber (POF). The proposed geometries have proven to be suitable for measuring the refractive indexes of liquids whose refractive index falls around 1.35. Furthermore, the proposed sensing head, being low cost and relatively easy to realize, may be very attractive for biosensor implementation.

Journal ArticleDOI
24 Mar 2011-Sensors
TL;DR: An overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions, and their applicability in real-time settings is given.
Abstract: Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results.

Journal ArticleDOI
21 Nov 2011-Sensors
TL;DR: The physics behind the most frequently used DTS instruments are considered as they apply to four calibration methods for single-ended DTS installations, and new methods presented are more accurate than the instrument-calibrated data.
Abstract: Hydrologic research is a very demanding application of fiber-optic distributed temperature sensing (DTS) in terms of precision, accuracy and calibration. The physics behind the most frequently used DTS instruments are considered as they apply to four calibration methods for single-ended DTS installations. The new methods presented are more accurate than the instrument-calibrated data, achieving accuracies on the order of tenths of a degree root mean square error (RMSE) and mean bias. Effects of localized non-uniformities that violate the assumptions of single-ended calibration data are explored and quantified. Experimental design considerations such as selection of integration times or selection of the length of the reference sections are discussed, and the impacts of these considerations on calibrated temperatures are explored in two case studies.

Journal ArticleDOI
24 Feb 2011-Sensors
TL;DR: A new finger biometric method that uses a modified Gaussian high-pass filter to extract binary patterns of finger images that include the multimodal features of veins and finger geometries.
Abstract: In this paper, we propose a new finger biometric method. Infrared finger images are first captured, and then feature extraction is performed using a modified Gaussian high-pass filter through binarization, local binary pattern (LBP), and local derivative pattern (LDP) methods. Infrared finger images include the multimodal features of finger veins and finger geometries. Instead of extracting each feature using different methods, the modified Gaussian high-pass filter is fully convolved. Therefore, the extracted binary patterns of finger images include the multimodal features of veins and finger geometries. Experimental results show that the proposed method has an error rate of 0.13%.

Journal ArticleDOI
12 Jan 2011-Sensors
TL;DR: The recent progress in the development and integration of Ge-photodetectors on Si-based photonics will be comprehensively reviewed, along with remaining technological issues to be overcome and future research trends.
Abstract: High speed photodetectors are a key building block, which allow a large wavelength range of detection from 850 nm to telecommunication standards at optical fiber band passes of 1.3-1.55 μm. Such devices are key components in several applications such as local area networks, board to board, chip to chip and intrachip interconnects. Recent technological achievements in growth of high quality SiGe/Ge films on Si wafers have opened up the possibility of low cost Ge-based photodetectors for near infrared communication bands and high resolution spectral imaging with high quantum efficiencies. In this review article, the recent progress in the development and integration of Ge-photodetectors on Si-based photonics will be comprehensively reviewed, along with remaining technological issues to be overcome and future research trends.

Journal ArticleDOI
31 May 2011-Sensors
TL;DR: A survey on the current state-of-the-art in Wireless Sensor Network (WSN) Operating Systems (OSs) to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications.
Abstract: This paper presents a survey on the current state-of-the-art in Wireless Sensor Network (WSN) Operating Systems (OSs). In recent years, WSNs have received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home automation, and environmental monitoring, to name but a few. A WSN is a highly dynamic network because nodes die due to severe environmental conditions and battery power depletion. Furthermore, a WSN is composed of miniaturized motes equipped with scarce resources e.g., limited memory and computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace sensor motes after deployment, therefore a fundamental objective is to optimize the sensor motes’ life time. These characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications. The state-of-the-art in operating systems for WSNs has been examined in terms of the OS Architecture, Programming Model, Scheduling, Memory Management and Protection, Communication Protocols, Resource Sharing, Support for Real-Time Applications, and additional features. These features are surveyed for both real-time and non-real-time WSN operating systems.

Journal ArticleDOI
29 Jul 2011-Sensors
TL;DR: It is shown that if the SRRs are placed with the slits aligned with the symmetry plane of the CPW, the structure is transparent to signal propagation, however, if the symmetry is broken, a net axial magnetic field can be induced in the inner region of theSRRs, and signal propagation is inhibited at resonance.
Abstract: The symmetry properties of split ring resonators (SRRs) are exploited for the implementation of novel sensing devices. The proposed structure consists of a coplanar waveguide (CPW) loaded with movable SRRs on the back substrate side. It is shown that if the SRRs are placed with the slits aligned with the symmetry plane of the CPW, the structure is transparent to signal propagation. However, if the symmetry is broken, a net axial magnetic field can be induced in the inner region of the SRRs, and signal propagation is inhibited at resonance. The proposed structures can be useful as alignment sensors, position sensors and angle sensors. This novel sensing principle is validated through experiment.

Journal ArticleDOI
01 Mar 2011-Sensors
TL;DR: Key challenges, including developing a MIP formulation that is stable and integrated with the SERS substrate, and ensuring the MIP does not mask the spectral features of the target analyte through SERS polymer background, were successfully met.
Abstract: We report on a new sensor strategy that integrates molecularly imprinted polymers (MIPs) with surface enhanced Raman scattering (SERS). The sensor was developed to detect the explosive, 2,4,6-trinitrotoluene (TNT). Micron thick films of sol gel-derived xerogels were deposited on a SERS-active surface as the sensing layer. Xerogels were molecularly imprinted for TNT using non-covalent interactions with the polymer matrix. Binding of the TNT within the polymer matrix results in unique SERS bands, which allow for detection and identification of the molecule in the MIP. This MIP-SERS sensor exhibits an apparent dissociation constant of (2.3 ± 0.3) × 10 −5 M for TNT and a 3 µM detection limit. The response to TNT is reversible and the sensor is stable for at least 6 months. Key challenges, including developing a MIP formulation that is stable and integrated with the SERS substrate, and ensuring the MIP does not mask the spectral features of the target analyte through SERS polymer background, were successfully met. The results also suggest the MIP-SERS protocol can be extended to other target analytes of interest.

Journal ArticleDOI
16 May 2011-Sensors
TL;DR: This review examines the state of the art of both human and instrumental sensing currently used for the detection of odours and the main features and the working principles of modern electronic noses (E-Noses) are described, focusing on their better performances for environmental analysis.
Abstract: The complexity of the odours issue arises from the sensory nature of smell. From the evolutionary point of view olfaction is one of the oldest senses, allowing for seeking food, recognizing danger or communication: human olfaction is a protective sense as it allows the detection of potential illnesses or infections by taking into account the odour pleasantness/unpleasantness. Odours are mixtures of light and small molecules that, coming in contact with various human sensory systems, also at very low concentrations in the inhaled air, are able to stimulate an anatomical response: the experienced perception is the odour. Odour assessment is a key point in some industrial production processes (i.e., food, beverages, etc.) and it is acquiring steady importance in unusual technological fields (i.e., indoor air quality); this issue mainly concerns the environmental impact of various industrial activities (i.e., tanneries, refineries, slaughterhouses, distilleries, civil and industrial wastewater treatment plants, landfills and composting plants) as sources of olfactory nuisances, the top air pollution complaint. Although the human olfactory system is still regarded as the most important and effective “analytical instrument” for odour evaluation, the demand for more objective analytical methods, along with the discovery of materials with chemo-electronic properties, has boosted the development of sensor-based machine olfaction potentially imitating the biological system. This review examines the state of the art of both human and instrumental sensing currently used for the detection of odours. The olfactometric techniques employing a panel of trained experts are discussed and the strong and weak points of odour assessment through human detection are highlighted. The main features and the working principles of modern electronic noses (E-Noses) are then described, focusing on their better performances for environmental analysis. Odour emission monitoring carried out through both the techniques is finally reviewed in order to show the complementary responses of human and instrumental sensing.

Journal ArticleDOI
08 Aug 2011-Sensors
TL;DR: Fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, and endoscopic technology provides images of the internal surface of the object directly.
Abstract: Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress.

Journal ArticleDOI
15 Feb 2011-Sensors
TL;DR: Results indicate that an ultrasonic sensor is an appropriate tool to determine the average canopy characteristics, while a LIDAR sensor provides more accuracy and detailed information about the canopy.
Abstract: Canopy characterization is a key factor to improve pesticide application methods in tree crops and vineyards. Development of quick, easy and efficient methods to determine the fundamental parameters used to characterize canopy structure is thus an important need. In this research the use of ultrasonic and LIDAR sensors have been compared with the traditional manual and destructive canopy measurement procedure. For both methods the values of key parameters such as crop height, crop width, crop volume or leaf area have been compared. Obtained results indicate that an ultrasonic sensor is an appropriate tool to determine the average canopy characteristics, while a LIDAR sensor provides more accuracy and detailed information about the canopy. Good correlations have been obtained between crop volume (CVU) values measured with ultrasonic sensors and leaf area index, LAI (R2 = 0.51). A good correlation has also been obtained between the canopy volume measured with ultrasonic and LIDAR sensors (R2 = 0.52). Laser measurements of crop height (CHL) allow one to accurately predict the canopy volume. The proposed new technologies seems very appropriate as complementary tools to improve the efficiency of pesticide applications, although further improvements are still needed.

Journal ArticleDOI
28 Nov 2011-Sensors
TL;DR: This review summarizes the most successful approaches for preparing biocompatible QDs using various chemical ligands and describes diverse strategies for altering the QD surface.
Abstract: Luminescent colloidal quantum dots (QDs) possess numerous advantages as fluorophores in biological applications. However, a principal challenge is how to retain the desirable optical properties of quantum dots in aqueous media while maintaining biocompatibility. Because QD photophysical properties are directly related to surface states, it is critical to control the surface chemistry that renders QDs biocompatible while maintaining electronic passivation. For more than a decade, investigators have used diverse strategies for altering the QD surface. This review summarizes the most successful approaches for preparing biocompatible QDs using various chemical ligands.

Journal ArticleDOI
02 Mar 2011-Sensors
TL;DR: This paper builds upon a review paper published in Sensors in 2002, presenting a comprehensive review on the theory, operating principles, instrumentation and key applications of magnetoelastic sensing technology.
Abstract: Thick-film magnetoelastic sensors vibrate mechanically in response to a time varying magnetic excitation field. The mechanical vibrations of the magnetostrictive magnetoelastic material launch, in turn, a magnetic field by which the sensor can be monitored. Magnetic field telemetry enables contact-less, remote-query operation that has enabled many practical uses of the sensor platform. This paper builds upon a review paper we published in Sensors in 2002 (Grimes, C.A.; et al. Sensors 2002, 2, 294-313), presenting a comprehensive review on the theory, operating principles, instrumentation and key applications of magnetoelastic sensing technology.