scispace - formally typeset
Search or ask a question
JournalISSN: 1550-8943

Stem Cell Reviews and Reports 

Springer Science+Business Media
About: Stem Cell Reviews and Reports is an academic journal. The journal publishes majorly in the area(s): Stem cell & Mesenchymal stem cell. It has an ISSN identifier of 1550-8943. Over the lifetime, 1361 publications have been published receiving 40281 citations. The journal is also known as: Stem cell reviews.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive review discusses the role that ALDH plays in normal stem cells and CSCs, with focus on ALDH1 and ALDH3A1.
Abstract: Normal stem cells and cancer stem cells (CSCs) share similar properties, in that both have the capacity to self-renew and differentiate into multiple cell types. In both the normal stem cell and cancer stem cell fields, there has been a great need for a universal marker that can effectively identify and isolate these rare populations of cells in order to characterize them and use this information for research and therapeutic purposes. Currently, it would appear that certain isoenzymes of the aldehyde dehydrogenase (ALDH) superfamily may be able to fulfill this role as a marker for both normal and cancer stem cells. ALDH has been identified as an important enzyme in the protection of normal hematopoietic stem cells, and is now also widely used as a marker to identify and isolate various types of normal stem cells and CSCs. In addition, emerging evidence suggests that ALDH1 is not only a marker for stem cells, but may also play important functional roles related to self-protection, differentiation, and expansion. This comprehensive review discusses the role that ALDH plays in normal stem cells and CSCs, with focus on ALDH1 and ALDH3A1. Discrepancies in the functional themes between cell types and future perspectives for therapeutic applications will also be discussed.

478 citations

Journal ArticleDOI
TL;DR: The safety, reproducibility and quality of the stem cells must thoroughly be examined prior to extensive use in clinical applications, as cell therapies are becoming more frequent and the need for control in the processing laboratory grows consequently involving a greater risk of complications and possibly adverse events for the recipient.
Abstract: Adipose stem cells (ASCs) are an attractive and abundant stem cell source with therapeutic applicability in diverse fields for the repair and regeneration of acute and chronically damaged tissues. Importantly, unlike the human bone marrow stromal/stem stem cells (BMSCs) that are present at low frequency in the bone marrow, ASCs can be retrieved in high number from either liposuction aspirates or subcutaneous adipose tissue fragments and can easily be expanded in vitro. ASCs display properties similar to that observed in BMSCs and, upon induction, undergo at least osteogenic, chondrogenic, adipogenic and neurogenic, differentiation in vitro. Furthermore, ASCs have been shown to be immunoprivileged, prevent severe graft-versus-host disease in vitro and in vivo and to be genetically stable in long-term culture. They have also proven applicability in other functions, such as providing hematopoietic support and gene transfer. Due to these characteristics, ASCs have rapidly advanced into clinical trials for treatment of a broad range of conditions. As cell therapies are becoming more frequent, clinical laboratories following good manufacturing practices are needed. At the same time as laboratory processes become more extensive, the need for control in the processing laboratory grows consequently involving a greater risk of complications and possibly adverse events for the recipient. Therefore, the safety, reproducibility and quality of the stem cells must thoroughly be examined prior to extensive use in clinical applications. In this review, some of the aspects of examination on ASCs in vitro and the utilization of ASCs in clinical studies are discussed.

416 citations

Journal ArticleDOI
TL;DR: Understanding the molecular and mechanistic basis of biophysical regulation will point the way toward novel ways to rationally direct cell functions, allowing us to capitalize upon the potential ofBiophysical signaling for regenerative medicine and tissue engineering.
Abstract: Biophysical signaling, an integral regulator of long-term cell behavior in both excitable and non-excitable cell types, offers enormous potential for modulation of important cell functions. Of particular interest to current regenerative medicine efforts, we review several examples that support the functional role of transmembrane potential (Vmem) in the regulation of proliferation and differentiation. Interestingly, distinct Vmem controls are found in many cancer cell and precursor cell systems, which are known for their proliferative and differentiation capacities, respectively. Collectively, the data demonstrate that bioelectric properties can serve as markers for cell characterization and can control cell mitotic activity, cell cycle progression, and differentiation. The ability to control cell functions by modulating bioelectric properties such as Vmem would be an invaluable tool for directing stem cell behavior toward therapeutic goals. Biophysical properties of stem cells have only recently begun to be studied and are thus in need of further characterization. Understanding the molecular and mechanistic basis of biophysical regulation will point the way toward novel ways to rationally direct cell functions, allowing us to capitalize upon the potential of biophysical signaling for regenerative medicine and tissue engineering.

407 citations

Journal ArticleDOI
TL;DR: The evidence for breast cancer stem cells is described; studies consistently show that stem cell like and breast cancer initiating populations can be enriched using cell surface makers CD44+/CD24− and have upregulated genes which include Notch.
Abstract: Adult stem cells are found in numerous tissues of the body and play a role in tissue development, replacement and repair. Evidence shows that breast stem cells are multipotent and can self renew, which are key characteristics of stem cells, and a single cell enriched with cell surface markers has the ability to grow a fully functional mammary gland in vivo. Many groups have extrapolated the cancer stem cell hypothesis from the haematopoietic system to solid cancers, where using in vitro culture techniques and in vivo transplant models have established evidence of cancer stem cells in colon, pancreas, prostate, brain and breast cancers. In the report we describe the evidence for breast cancer stem cells; studies consistently show that stem cell like and breast cancer initiating populations can be enriched using cell surface makers CD44+/CD24- and have upregulated genes which include Notch. Notch signalling has been highlighted as a pathway involved in the development of the breast and is frequently dysregulated in invasive breast cancer. We have investigated the role of Notch in a pre-invasive breast lesion, ductal carcinoma in situ (DCIS), and have found that aberrant activation of Notch signalling is an early event in breast cancer. High expression of Notch 1 intracellular domain (NICD) in DCIS also predicted a reduced time to recurrence 5 years after surgery. Using a non-adherent sphere culture technique we have grown DCIS mammospheres from primary DCIS tissue, where self-renewal capacity, measured by the number of mammosphere initiating cells, were increased from normal breast tissue. A gamma-secretase inhibitor, DAPT, which inhibits all four Notch receptors and a Notch 4 neutralising antibody were shown to reduce DCIS mammosphere formation, indicating that Notch signalling and other stem cell self-renewal pathways may represent novel therapeutic targets to prevent recurrence of pre-invasive and invasive breast cancer.

357 citations

Journal ArticleDOI
TL;DR: This work presents a systematic analysis of seven major signaling pathways implicated in both cancer and stem cells and presents a map of the signaling networks involved in cancer and embryonic stem cells.
Abstract: Cancer cells have the ability to divide indefinitely and spread to different parts of the body during metastasis. Embryonic stem cells can self-renew and, through differentiation to somatic cells, provide the building blocks of the human body. Embryonic stem cells offer tremendous opportunities for regenerative medicine and serve as an excellent model system to study early human development. Many of the molecular mechanism underlying tumorigenesis in cancer and self-renewal in stem cells have been elucidated in the past decade. Here we present a systematic analysis of seven major signaling pathways implicated in both cancer and stem cells. We present on overview of the JAK/STAT, Notch, MAPK/ERK, PI3K/AKT, NF-kB, Wnt and TGF-β pathways and analyze their activation status in the context of cancer and stem cells. We focus on their role in stem cell self-renewal and development and identify key molecules, whose aberrant expression has been associated with malignant phenotypes. We conclude by presenting a map of the signaling networks involved in cancer and embryonic stem cells.

344 citations

Network Information
Related Journals (5)
Stem Cells
5.8K papers, 406.6K citations
87% related
Cell Stem Cell
3K papers, 399.2K citations
86% related
Journal of Cellular Physiology
16.8K papers, 703.6K citations
81% related
Journal of Cellular and Molecular Medicine
7.4K papers, 239.5K citations
80% related
Journal of Cellular Biochemistry
13K papers, 480.2K citations
79% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2021253
2020106
201970
201878
201775
201668