scispace - formally typeset
Search or ask a question

Showing papers in "The Journal of Antibiotics in 2017"


Journal ArticleDOI
TL;DR: There is now an urgent need to develop new and useful antibiotics to avoid returning to the ‘pre-antibiotic era’.
Abstract: Beginning with the discovery of penicillin by Alexander Fleming in the late 1920s, antibiotics have revolutionized the field of medicine. They have saved millions of lives each year, alleviated pain and suffering, and have even been used prophylactically for the prevention of infectious diseases. However, we have now reached a crisis where many antibiotics are no longer effective against even the simplest infections. Such infections often result in an increased number of hospitalizations, more treatment failures and the persistence of drug-resistant pathogens. Of particular concern are organisms such as methicillin-resistant Staphylococcus aureus, Clostridium difficile, multidrug and extensively drug-resistant Mycobacterium tuberculosis, Neisseria gonorrhoeae, carbapenem-resistant Enterobacteriaceae and bacteria that produce extended spectrum β-lactamases, such as Escherichia coli. To make matters worse, there has been a steady decline in the discovery of new and effective antibiotics for a number of reasons. These include increased costs, lack of adequate support from the government, poor returns on investment, regulatory hurdles and pharmaceutical companies that have simply abandoned the antibacterial arena. Instead, many have chosen to focus on developing drugs that will be used on a chronic basis, which will offer a greater profit and more return on investment. Therefore, there is now an urgent need to develop new and useful antibiotics to avoid returning to the 'pre-antibiotic era'. Some potential opportunities for antibiotic discovery include better economic incentives, genome mining, rational metabolic engineering, combinatorial biosynthesis and further exploration of the earth's biodiversity.

314 citations


Journal ArticleDOI
TL;DR: There is growing global recognition that the continued emergence of multidrug-resistant bacteria poses a serious threat to human health and action plans released by the World Health Organization and governments of the UK and USA in particular recognize that discovering new antibiotics, particularly those with new modes of action, is one essential element required to avert future catastrophic pandemics.
Abstract: There is growing global recognition that the continued emergence of multidrug-resistant bacteria poses a serious threat to human health. Action plans released by the World Health Organization and governments of the UK and USA in particular recognize that discovering new antibiotics, particularly those with new modes of action, is one essential element required to avert future catastrophic pandemics. This review lists the 30 antibiotics and two β-lactamase/β-lactam combinations first launched since 2000, and analyzes in depth seven new antibiotics and two new β-lactam/β-lactamase inhibitor combinations launched since 2013. The development status, mode of action, spectra of activity and genesis (natural product, natural product-derived, synthetic or protein/mammalian peptide) of the 37 compounds and six β-lactamase/β-lactam combinations being evaluated in clinical trials between 2013 and 2015 are discussed. Compounds discontinued from clinical development since 2013 and new antibacterial pharmacophores are also reviewed.

288 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identify and assess the major international, European Union, US and UK antibiotic R&D funding programs and evaluate them across market and public health criteria necessary for comprehensively improving the antibiotic market.
Abstract: Political momentum and funding for combatting antimicrobial resistance (AMR) continues to build. Numerous major international and national initiatives aimed at financially incentivising the research and development (R&D) of antibiotics have been implemented. However, it remains unclear how to effectively strengthen the current set of incentive programmes to further accelerate antibiotic innovation. Based on a literature review and expert input, this study first identifies and assesses the major international, European Union, US and UK antibiotic R&D funding programmes. These programmes are then evaluated across market and public health criteria necessary for comprehensively improving the antibiotic market. The current set of incentive programmes are an important initial step to improving the economic feasibility of antibiotic development. However, there appears to be a lack of global coordination across all initiatives, which risks duplicating efforts, leaving funding gaps in the value chain and overlooking important AMR goals. This study finds that incentive programmes are overly committed to early-stage push funding of basic science and preclinical research, while there is limited late-stage push funding of clinical development. Moreover, there are almost no pull incentives to facilitate transition of antibiotic products from early clinical phases to commercialisation, focus developer concentration on the highest priority antibiotics and attract large pharmaceutical companies to invest in the market. Finally, it seems that antibiotic sustainability and patient access requirements are poorly integrated into the array of incentive mechanisms.

172 citations


Journal ArticleDOI
TL;DR: The potential for and recent progress in the development of compounds targeting bacterial proteases with a focus on AAA+ family proteolytic complexes and signal peptidases are described, offering an arsenal of novel antibiotic targets ripe for development.
Abstract: Bacterial proteases are an extensive collection of enzymes that have vital roles in cell viability, stress response and pathogenicity. Although their perturbation clearly offers the potential for antimicrobial drug development, both as traditional antibiotics and anti-virulence drugs, they are not yet the target of any clinically used therapeutics. Here we describe the potential for and recent progress in the development of compounds targeting bacterial proteases with a focus on AAA+ family proteolytic complexes and signal peptidases (SPs). Caseinolytic protease (ClpP) belongs to the AAA+ family of proteases, a group of multimeric barrel-shaped complexes whose activity is tightly regulated by associated AAA+ ATPases. The opportunity for chemical perturbation of these complexes is demonstrated by compounds targeting ClpP for inhibition, activation or perturbation of its associated ATPase. Meanwhile, SPs are also a proven antibiotic target. Responsible for the cleavage of targeting peptides during protein secretion, both type I and type II SPs have been successfully targeted by chemical inhibitors. As the threat of pan-antibiotic resistance continues to grow, these and other bacterial proteases offer an arsenal of novel antibiotic targets ripe for development.

161 citations


Journal ArticleDOI
Andy Crump1
TL;DR: ivermectin is continuing to surprise and excite scientists, offering more and more promise to help improve global public health by treating a diverse range of diseases, with its unexpected potential as an antibacterial, antiviral and anti-cancer agent being particularly extraordinary.
Abstract: Over the past decade, the global scientific community have begun to recognize the unmatched value of an extraordinary drug, ivermectin, that originates from a single microbe unearthed from soil in Japan. Work on ivermectin has seen its discoverer, Satoshi Ōmura, of Tokyo's prestigious Kitasato Institute, receive the 2014 Gairdner Global Health Award and the 2015 Nobel Prize in Physiology or Medicine, which he shared with a collaborating partner in the discovery and development of the drug, William Campbell of Merck & Co. Incorporated. Today, ivermectin is continuing to surprise and excite scientists, offering more and more promise to help improve global public health by treating a diverse range of diseases, with its unexpected potential as an antibacterial, antiviral and anti-cancer agent being particularly extraordinary.

143 citations


Journal ArticleDOI
TL;DR: An overview of the methods currently available for the identification and antimicrobial susceptibility testing of anaerobic isolates, when should these methods be used and what are the recent developments in resistance patterns of an aerobic bacteria is given.
Abstract: Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance purposes or otherwise is of paramount importance but the availability of these testing methods is usually limited. In this present review, our aim was to give an overview of the methods currently available for the identification (using phenotypic characteristics, biochemical testing, gas-liquid chromatography, MALDI-TOF MS and WGS) and antimicrobial susceptibility testing (agar dilution, broth microdilution, disk diffusion, gradient tests, automated systems, phenotypic and molecular resistance detection techniques) of anaerobes, when should these methods be used and what are the recent developments in resistance patterns of anaerobic bacteria.

119 citations


Journal ArticleDOI
TL;DR: The approach to this promising line of research is introduced, incorporating data from other publications, and the potential that endophytic actinomycetes offer as a new source of novel lead compounds is illustrated.
Abstract: Endophytic actinomycetes associated with plant roots are a relatively untapped source of potential new bioactive compounds. This is becoming increasingly important, as the returns from discovery research on soil-dwelling microbes, have been continuously diminishing. We have isolated more than 1000 strains of actinomycetes from plant roots in our search for novel bioactive compounds, identified and assayed their bioactive metabolites, as well as investigated their biosynthetic genes for generating secondary metabolites. This has resulted in the discovery of several interesting compounds. Creation of plant root clone libraries enabled us to confirm that we had, indeed, isolated endophytes. In this paper, we introduce our approach to this promising line of research, incorporating data from other publications, and illustrate the potential that endophytic actinomycetes offer as a new source of novel lead compounds.

105 citations


Journal ArticleDOI
TL;DR: In this article, a study aimed at estimating the residue levels of four commonly used antibiotics in meat samples using three analytical methods (ELISA, TLC and HPLC) and a total of 150 samples of raw meat from sales points were analysed for ciprofloxacin, streptomycin, tetracycline, and sulphanilamide residues.
Abstract: Antibiotic residue in meat is a serious public health concern due to its harmful effects on consumer health. This study aimed at estimating the residue levels of four commonly used antibiotics in meat samples using three analytical methods (ELISA, TLC and HPLC). A total of 150 samples of raw meat from sales points were analysed for ciprofloxacin, streptomycin, tetracycline, and sulphanilamide residues. Overall, ELISA analysis showed that 56, 34, 18, and 25.3% of the samples tested positive for ciprofloxacin, streptomycin, sulphanilamide and tetracycline residues respectively while TLC and HPLC detected 21.4, 29.4, 92.5, and 14.6%, and 8.3, 41.1, 88.8, and 14.6% of the samples as containing the residues, with ciprofloxacin and sulphanilamide having the lowest and highest occurrence, respectively. Furthermore, the concentrations of antibiotic residues were in the ranges of 19.8-92.8, 26.6-489.1, 14.2-1280.8, and 42.6-355.6 μg/kg with ELISA, while HPLC detected concentration ranges of 20.7-82.1, 41.8-320.8, 65.2-952.2 and 32.8-95.6 μg/kg for sulphanilamide, tetracycline, streptomycin, and ciprofloxacin, respectively. Mean ciprofloxacin and streptomycin residue levels were above the Codex/SA MRL recommended limit, while 3% of the samples contained multidrug residues. Although some of the mean residues levels were below the permissible limits, the co-occurrence of multidrug residues in some of the samples calls for concern.

91 citations


Journal ArticleDOI
TL;DR: Two activation approaches developed in my laboratory are described: use of the activation mediator goadsporin and combined-culture, both of which may have applications in natural product-based drug discovery.
Abstract: Streptomyces have the potential to produce more than 30 secondary metabolites; however, the expression of most metabolite biosynthetic gene clusters is cryptic or silent. Indeed, the expression of these genes is conditional and dependent on culture conditions. To activate such gene clusters, many methods have been developed. In this review, I describe two activation approaches developed in my laboratory: use of the activation mediator goadsporin and combined-culture. Goadsporin is a chemical substance isolated from Streptomyces sp. TP-A0584; it induces secondary metabolism and sporulation of many Streptomyces species. Combined-culture is a co-culture method to activate secondary metabolism in Streptomyces. The activator strains are mycolic acid-containing bacteria and ~90% of Streptomyces species show changes in secondary metabolism in combined-culture compared with pure culture. Thus, both methods may have applications in natural product-based drug discovery.

90 citations


Journal ArticleDOI
TL;DR: This review addresses current progress in the activation of these pathways, describing methods for activating silent genes, and focuses on genetic manipulation of transcription and translation (ribosome engineering), the utilization of elicitors, metabolism remodeling and co-cultivation.
Abstract: As bacteria and fungi have been found to contain genes encoding enzymes that synthesize a plethora of potential secondary metabolites, interest has grown in the activation of these cryptic pathways. Homologous and heterologous expression of these cryptic secondary metabolite-biosynthetic genes, often silent under ordinary laboratory fermentation conditions, may lead to the discovery of novel secondary metabolites. This review addresses current progress in the activation of these pathways, describing methods for activating silent genes. It especially focuses on genetic manipulation of transcription and translation (ribosome engineering), the utilization of elicitors, metabolism remodeling and co-cultivation. In particular, the principles and technical points of ribosome engineering and the significance of S-adenosylmethionine in bacterial physiology, especially secondary metabolism, are described in detail.

80 citations


Journal ArticleDOI
TL;DR: This review describes recent work aimed at improving the activity and/or reducing the toxicity of polymyxins, and consideration to providing activity against emerging strains with reduced susceptibility to poly myxins is made.
Abstract: Over the last decade, there has been a resurgence of interest in polymyxins owing to the rapid rise in multi-drug resistant Gram-negative bacteria against which polymyxins offer a last-resort treatment. Although having excellent antibacterial activity, the clinical utility of polymyxins is limited by toxicity, especially renal toxicity. There is much interest therefore in developing polymyxin analogues with an improved therapeutic index. This review describes recent work aimed at improving the activity and/or reducing the toxicity of polymyxins. Consideration to providing activity against emerging strains with reduced susceptibility to polymyxins is also made.

Journal ArticleDOI
TL;DR: The chemical stability and solubility of CD101 contribute to dosing, pharmacokinetic, formulation and safety advantages over other echinocandins and should expand utility beyond daily i.v. therapy.
Abstract: The echinocandins are an important class of antifungal agents. However, instability and, in some cases, lack of solubility have restricted their use to situations in which daily infusions are acceptable. CD101 is a novel echinocandin in development for topical and weekly i.v. administration that exhibits prolonged stability in plasma and aqueous solutions up to 40 °C. After incubation for 44 h in rat, dog, monkey and human plasma at 37 °C, the percent of CD101 remaining (91%, 79%, 94% and 93%, respectively) was consistently greater than that of anidulafungin (7%, 15%, 14% and 7%, respectively). Similarly, after incubation in phosphate-buffered saline at 37 °C, the CD101 remaining (96%) was greater than that of anidulafungin (42%). CD101 exhibited <2% degradation after long-term storage at 40 °C as a lyophilized powder (9 months) and at room temperature in 5% dextrose (15 months), 0.9% saline (12 months) and sterile water (18 months). Degradation was <7% at 40 °C in acetate and lactate buffers (6 to 9 months at pH 4.5–5.5). The chemical stability and solubility of CD101 contribute to dosing, pharmacokinetic, formulation and safety advantages over other echinocandins and should expand utility beyond daily i.v. therapy.

Journal ArticleDOI
TL;DR: This work synthesize and review studies of so-called ‘suppressive interactions’ in the literature, examining why these interactions have been largely disregarded in the past, the strategies used to identify them, their mechanistic basis, demonstrations of their potential to reverse the evolution of resistance and arguments for and against using them in clinical treatment.
Abstract: Antibiotic effectiveness often changes when two or more such drugs are administered simultaneously and unearthing antibiotic combinations with enhanced efficacy (synergy) has been a longstanding clinical goal. However, antibiotic resistance, which undermines individual drugs, threatens such combined treatments. Remarkably, it has emerged that antibiotic combinations whose combined effect is lower than that of at least one of the individual drugs can slow or even reverse the evolution of resistance. We synthesize and review studies of such so-called 'suppressive interactions' in the literature. We examine why these interactions have been largely disregarded in the past, the strategies used to identify them, their mechanistic basis, demonstrations of their potential to reverse the evolution of resistance and arguments for and against using them in clinical treatment. We suggest future directions for research on these interactions, aiming to expand the basic body of knowledge on suppression and to determine the applicability of suppressive interactions in the clinic.

Journal ArticleDOI
TL;DR: The focus of this review is to summarize the colistin resistance mechanisms, and understand their impact on the fitness and virulence of bacteria and on the dissemination of colistIn-resistant A. baumannii strains.
Abstract: Acinetobacter baumannii is an important opportunistic nosocomial pathogen often resistant to multiple antibiotics classes. Colistin, an "old" antibiotic, is now considered a last-line treatment option for extremely resistant isolates. In the meantime, resistance to colistin has been reported in clinical A. baumannii strains. Colistin is a cationic peptide that disrupts the outer membrane (OM) of Gram-negative bacteria. Colistin resistance is primarily due to post-translational modification or loss of the lipopolysaccharide (LPS) molecules inserted into the outer leaflet of the OM. LPS modification prevents the binding of polymyxin to the bacterial surface and may lead to alterations in bacterial virulence. Antimicrobial pressure drives the evolution of antimicrobial resistance and resistance is often associated with a reduced bacterial fitness. Therefore, the alterations in LPS may induce changes in the fitness of A. baumannii. However, compensatory mutations in clinical A. baumannii may ameliorate the cost of resistance and may play an important role in the dissemination of colistin-resistant A. baumannii isolates. The focus of this review is to summarize the colistin resistance mechanisms, and understand their impact on the fitness and virulence of bacteria and on the dissemination of colistin-resistant A. baumannii strains.

Journal ArticleDOI
TL;DR: It is shown here that ASP2397 is a cyclic hexapeptide that chelates aluminum ion and is therefore similar to ferrichrome, a hydroxamate siderophore, which differs structurally from licensed antifungal agents such as amphotericin B, triazoles and echinocandins.
Abstract: The novel antifungal agent ASP2397 (Vical's compound ID VL-2397) is produced by the fungal strain MF-347833 that was isolated from Malaysian leaf litter and is identified here as an Acremonium species based on its morphology, physiological properties and 28S ribosomal DNA sequence. Because of its potential importance for producing novel antifungal agents, we determined the taxonomic and biologic properties of MF-347833. We show here that ASP2397 is a cyclic hexapeptide that chelates aluminum ion and is therefore similar to ferrichrome, a hydroxamate siderophore. However, ASP2397 differs structurally from licensed antifungal agents such as amphotericin B, triazoles and echinocandins. To understand the relationship between chemical structure and biological function, we isolated certain ASP2397 derivatives from the culture broth, and we further chemically converted the metal-free form to other derivatives.

Journal ArticleDOI
TL;DR: A new bioinformatics analysis of the putative PhoP-binding sequences in Streptomyces avermitilis showed high weight values and were classified according to the available genetic information, including aveR, located in the avermectin gene cluster, encoding a LAL-type regulator, and afsS, which is regulated byPhoP and AfsR.
Abstract: Phosphate limitation is important for production of antibiotics and other secondary metabolites in Streptomyces. Phosphate control is mediated by the two-component system PhoR-PhoP. Following phosphate depletion, PhoP stimulates expression of genes involved in scavenging, transport and mobilization of phosphate, and represses the utilization of nitrogen sources. PhoP reduces expression of genes for aerobic respiration and activates nitrate respiration genes. PhoP activates genes for teichuronic acid formation and reduces expression of genes for phosphate-rich teichoic acid biosynthesis. In Streptomyces coelicolor, PhoP repressed several differentiation and pleiotropic regulatory genes, which affects development and indirectly antibiotic biosynthesis. A new bioinformatics analysis of the putative PhoP-binding sequences in Streptomyces avermitilis was made. Many sequences in S. avermitilis genome showed high weight values and were classified according to the available genetic information. These genes encode phosphate scavenging proteins, phosphate transporters and nitrogen metabolism genes. Among of the genes highlighted in the new studies was aveR, located in the avermectin gene cluster, encoding a LAL-type regulator, and afsS, which is regulated by PhoP and AfsR. The sequence logo for S. avermitilis PHO boxes is similar to that of S. coelicolor, with differences in the weight value for specific nucleotides in the sequence.

Journal ArticleDOI
TL;DR: The findings strongly suggest that whole bee venom or melittin could be effective antimicrobial agents for B. burgdorferi; however, further research is necessary to evaluate their effectiveness in vivo, as well as their safe and effective delivery method for their therapeutic use.
Abstract: Lyme disease is a tick-borne, multi-systemic disease, caused by the bacterium Borrelia burgdorferi. Though antibiotics are used as a primary treatment, relapse often occurs after the discontinuation of antimicrobial agents. The reason for relapse remains unknown, however previous studies suggest the possible presence of antibiotic resistant Borrelia round bodies, persisters and attached biofilm forms. Thus, there is an urgent need to find antimicrobial agents suitable to eliminate all known forms of B. burgdorferi. In this study, natural antimicrobial agents such as Apis mellifera venom and a known component, melittin, were tested using SYBR Green I/PI, direct cell counting, biofilm assays combined with LIVE/DEAD and atomic force microscopy methods. The obtained results were compared to standalone and combinations of antibiotics such as Doxycycline, Cefoperazone, Daptomycin, which were recently found to be effective against Borrelia persisters. Our findings showed that both bee venom and melittin had significant effects on all the tested forms of B. burgdorferi. In contrast, the control antibiotics when used individually or even in combinations had limited effects on the attached biofilm form. These findings strongly suggest that whole bee venom or melittin could be effective antimicrobial agents for B. burgdorferi; however, further research is necessary to evaluate their effectiveness in vivo, as well as their safe and effective delivery method for their therapeutic use.

Journal ArticleDOI
TL;DR: The novel antifungal compound ASP2397 was identified that not only cured infected silkworm larvae but also increased the rates of survival of mice infected with A. fumigatus.
Abstract: Natural products are the major source of currently available drugs. However, screening natural product presents several challenges, including the time-consuming and labor-intensive steps required for the isolation of a drug from crude extracts as well as the differences between the activities of compounds in vitro and in vivo. To address these challenges, we used silkworm larvae infected with Aspergillus fumigatus to screen a natural products library for potent drugs to treat invasive aspergillosis. A rationally designed library was constructed using numerous, geographically diverse fungal species and then screened to collect extracts of microorganisms that had detectable anti-Aspergillus activity. We evaluated this library using cultures of A. fumigatus and a silkworm model system of A. fumigatus infection. With this model, we identified the novel antifungal compound ASP2397 that not only cured infected silkworm larvae but also increased the rates of survival of mice infected with A. fumigatus. These findings strongly support the utility of the silkworm screening system for the simple and rapid isolation of antibiotics from natural products libraries.

Journal ArticleDOI
TL;DR: The highest increase in the accumulation of compound 1 was observed in the presence of apple and carrot juice, whereas the stimulating effect was weaker for banana juice, and cytotoxicity against the human ovarian cancer cell line A2780 was observed.
Abstract: Using the OSMAC (One Strain MAny Compounds) approach, the fungal endophyte Fusarium tricinctum was cultivated on fruit and vegetable juice-supplemented solid rice media. This led to an up to 80-fold increase in the accumulation of the new natural product fusarielin J (1), as well as to the induction of two new natural products fusarielin K (2) and fusarielin L (3) and the known derivatives fusarielins A (4) and B (5). Compounds 2-5 were not detected when the fungus was grown on rice media lacking either fruit or vegetable juice. The highest increase in the accumulation of compound 1 was observed in the presence of apple and carrot juice, whereas the stimulating effect was weaker for banana juice. Compound 1 exhibited cytotoxicity against the human ovarian cancer cell line A2780, with an IC50 value of 12.5 μM.

Journal ArticleDOI
TL;DR: The knowledge on the antibiotic production promoted by cocultivation of multiple microbial strains is overviewed and characterization of the promotive factors produced by stimulator strains is expected to give clues to the development of effective cultivation conditions for drug discovery.
Abstract: Today, the frequency of discovery of new antibiotics in microbial culture is significantly decreasing. The evidence from whole-genome surveys suggests that many genes involved in the synthesis of unknown metabolites do exist but are not expressed under conventional cultivation conditions. Therefore, it is urgently necessary to study the conditions that make otherwise silent genes active in microbes. Here we overview the knowledge on the antibiotic production promoted by cocultivation of multiple microbial strains. Accumulating evidence indicates that cocultivation can be an effective way to stimulate the production of substances that are not formed during pure cultivation. Characterization of the promotive factors produced by stimulator strains is expected to give clues to the development of effective cultivation conditions for drug discovery.

Journal ArticleDOI
TL;DR: In this paper, a series of coumarin-benzimidazole hybrids were designed, synthesized and evaluated for their broad spectrum antimicrobial activity, which showed the most promising broad spectrum antibacterial activity against Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and Proteus vulgaris.
Abstract: Molecular hybridization approach is an emerging tool in drug discovery for designing new pharmacophores with biological activity. A novel, new series of coumarin-benzimidazole hybrids were designed, synthesized and evaluated for their broad spectrum antimicrobial activity. Among all the synthesized molecules, compound (E)-3-(2-1H-benzo[d]imidazol-1-yl)-1-((4-chlorobenzyl)oxy)imino)ethyl)-2H-chromen-2-one showed the most promising broad spectrum antibacterial activity against Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and Proteus vulgaris. In addition, it has showed no cytotoxicity and hemolysis at 10 times the MIC concentration. SAR studies indicate that position of the chlorine atom in the hybrid critically determines the antibacterial activity.

Journal ArticleDOI
TL;DR: Bacteriophages were originally regarded as a nuisance, but are now considered promising antimicrobials to fight milk-borne pathogens without contributing to the increase in antibiotic resistance.
Abstract: The history of dairy farming goes back thousands of years, evolving from a traditional small-scale production to the industrialized manufacturing of fermented dairy products. Commercialization of milk and its derived products has been very important not only as a source of nourishment but also as an economic resource. However, the dairy industry has encountered several problems that have to be overcome to ensure the quality and safety of the final products, as well as to avoid economic losses. Within this context, it is interesting to highlight the role played by bacteriophages, or phages, viruses that infect bacteria. Indeed, bacteriophages were originally regarded as a nuisance, being responsible for fermentation failure and economic losses when infecting lactic acid bacteria, but are now considered promising antimicrobials to fight milk-borne pathogens without contributing to the increase in antibiotic resistance.

Journal ArticleDOI
TL;DR: The results justify the traditional uses of macerations and decoctions of T. brownii stem wood and bark for crop and wood protection and demonstrate that standardized extracts could have uses for the eco-friendly control of plant pathogenic fungi in African agroforestry systems.
Abstract: Decoctions and macerations of the stem bark and wood of Terminalia brownii Fresen. are used in traditional medicine for fungal infections and as fungicides on field crops and in traditional granaries in Sudan. In addition, T. brownii water extracts are commonly used as sprays for protecting wooden houses and furniture. Therefore, using agar disc diffusion and macrodilution methods, eight extracts of various polarities from the stem wood and bark were screened for their growth-inhibitory effects against filamentous fungi commonly causing fruit, vegetable, grain and wood decay, as well as infections in the immunocompromised host. Ethyl acetate extracts of the stem wood and bark gave the best antifungal activities, with MIC values of 250 µg/mL against Nattrassia mangiferae and Fusarium verticillioides, and 500 µg/mL against Aspergillus niger and Aspergillus flavus. Aqueous extracts gave almost as potent effects as the ethyl acetate extracts against the Aspergillus and Fusarium strains, and were slightly more active than the ethyl acetate extracts against Nattrassiamangiferae. Thin layer chromatography, RP-HPLC-DAD and tandem mass spectrometry (LC-MS/MS), were employed to identify the chemical constituents in the ethyl acetate fractions of the stem bark and wood. The stem bark and wood were found to have a similar qualitative composition of polyphenols and triterpenoids, but differed quantitatively from each other. The stilbene derivatives, cis- (3) and trans- resveratrol-3-O-β-galloylglucoside (4), were identified for the first time in T. brownii. Moreover, methyl-(S)-flavogallonate (5), quercetin-7-β-O-di-glucoside (8), quercetin-7-O-galloyl-glucoside (10), naringenin-4'-methoxy-7-pyranoside (7), 5,6-dihydroxy-3',4',7-tri-methoxy flavone (12), gallagic acid dilactone (terminalin) (6), a corilagin derivative (9) and two oleanane type triterpenoids (1) and (2) were characterized. The flavonoids, a corilagin derivative and terminalin, have not been identified before in T. brownii. We reported earlier on the occurrence of methyl-S-flavogallonate and its isomer in the roots of T. brownii, but this is the first report on their occurrence in the stem wood as well. Our results justify the traditional uses of macerations and decoctions of T. brownii stem wood and bark for crop and wood protection and demonstrate that standardized extracts could have uses for the eco-friendly control of plant pathogenic fungi in African agroforestry systems. Likewise, our results justify the traditional uses of these preparations for the treatment of skin infections caused by filamentous fungi.

Journal ArticleDOI
TL;DR: Developing new macrolides was re-initiated after showing that inhibition of nicotinic acetylcholine receptors by the imidazolyl-pyridine moiety on the side chain of telithromycin was likely responsible for the severe adverse events.
Abstract: Erythromycin and its analogs are used to treat respiratory tract and other infections. The broad use of these antibiotics during the last 5 decades has led to resistance that can range from 20% to over 70% in certain parts of the world. Efforts to find macrolides that were active against macrolide-resistant strains led to the development of erythromycin analogs with alkyl-aryl side chains that mimicked the sugar side chain of 16-membered macrolides, such as tylosin. Further modifications were made to improve the potency of these molecules by removal of the cladinose sugar to obtain a smaller molecule, a modification that was learned from an older macrolide, pikromycin. A keto group was introduced after removal of the cladinose sugar to make the new ketolide subclass. Only one ketolide, telithromycin, received marketing authorization but because of severe adverse events, it is no longer widely used. Failure to identify the structure-relationship responsible for this clinical toxicity led to discontinuation of many ketolides that were in development. One that did complete clinical development, cethromycin, did not meet clinical efficacy criteria and therefore did not receive marketing approval. Work on developing new macrolides was re-initiated after showing that inhibition of nicotinic acetylcholine receptors by the imidazolyl-pyridine moiety on the side chain of telithromycin was likely responsible for the severe adverse events. Solithromycin is a fourth-generation macrolide that has a fluorine at the 2-position, and an alkyl-aryl side chain that is different from telithromycin. Solithromycin interacts at three sites on the bacterial ribosome, has activity against strains resistant to older macrolides (including telithromycin), and is mostly bactericidal. Pharmaceutical scientists involved in the development of macrolide antibiotics have learned from the teachings of Professor Satoshi Omura and progress in this field was not possible without his endeavors.

Journal ArticleDOI
TL;DR: The use of a dereplication platform incorporating the 5 min chromatographic method together with MDF facilitated rapid and effective identification of known compounds and detection of structurally related analogs in extracts of fungal cultures.
Abstract: Effective and rapid dereplication is a hallmark of present-day drug discovery from natural sources. This project strove to both decrease the time and expand the structural diversity associated with dereplication methodologies. A 5 min liquid chromatographic run time employing heated electrospray ionization (HESI) was evaluated to determine whether it could be used as a faster alternative over the 10 min ESI method we reported previously. Results revealed that the 5 min method was as sensitive as the 10 min method and, obviously, was twice as fast. To facilitate dereplication, the retention times, UV absorption maxima, full-scan HRMS and MS/MS were cross-referenced with an in-house database of over 300 fungal secondary metabolites. However, this strategy was dependent upon the makeup of the screening in-house database. Thus, mass defect filtering (MDF) was explored as an additional targeted screening strategy to permit identification of structurally related components. The use of a dereplication platform incorporating the 5 min chromatographic method together with MDF facilitated rapid and effective identification of known compounds and detection of structurally related analogs in extracts of fungal cultures.

Journal ArticleDOI
TL;DR: More than 61.5% of hospitalized children in India were on at least one antimicrobial agent, with excessive use of 3GCs, suggesting there is an opportunity to limit their inappropriate use.
Abstract: The prevalence of antimicrobial resistance in India is among the highest in the world. Antimicrobial use in inpatient settings is an important driver of resistance, but is poorly characterized, particularly in hospitalized children. In this study, conducted as part of the Global Antimicrobial Resistance, Prescribing, and Efficacy in Neonates and Children (GARPEC) project, we examined the prevalence of and indications of antimicrobial use, as well as antimicrobial agents used among hospitalized children by conducting four point prevalence surveys in six hospitals between February 2016 and February 2017. A total of 681 children were hospitalized in six hospitals across all survey days, and 419 (61.5%) were prescribed one or more antimicrobials (antibacterials, antivirals, antifungals). Antibacterial agents accounted for 90.8% (547/602) of the total antimicrobial prescriptions, of which third-generation cephalosporins (3GCs) accounted for 38.9% (213/547) and penicillin plus enzyme inhibitor combinations accounted for 14.4% (79/547). Lower respiratory tract infection (LRTI) was the most common indication for prescribing antimicrobials (149 prescriptions; 24.8%). Although national guidelines recommend the use of penicillin and combinations as first-line agents for LRTI, 3GCs were the most commonly prescribed antibacterial agents (55/149 LRTI prescriptions; 36.9%). In conclusion, 61.5% of hospitalized children were on at least one antimicrobial agent, with excessive use of 3GCs. Hence there is an opportunity to limit their inappropriate use.

Journal ArticleDOI
TL;DR: Three new chlorinated metabolites obtained from the EtOAc extract of the endophytic fungus Penicillium citrinum HL-5126 isolated from the mangrove Bruguiera sexangula var.
Abstract: New chlorinated xanthone and anthraquinone produced by a mangrove-derived fungus Penicillium citrinum HL-5126

Journal ArticleDOI
TL;DR: It is demonstrated that the identity of the bacterial strain must be considered before treatment with a particular metal ion, and contrary to the enhanced resistance anticipated from bacterial biofilms, particular metal salts were observed to be more effective against biofilm communities versus planktonic cells.
Abstract: The emergence of multidrug-resistant pathogens and the prevalence of biofilm-related infections have generated a demand for alternative anti-microbial therapies. Metals have not been explored in adequate detail for their capacity to combat infectious disease. Metal compounds can now be found in textiles, medical devices and disinfectants-yet, we know little about their efficacy against specific pathogens. To help fill this knowledge gap, we report on the anti-microbial and antibiofilm activity of seven metals: silver, copper, titanium, gallium, nickel, aluminum and zinc against three bacterial strains, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. To evaluate the capacity of metal ions to prevent the growth of, and eradicate biofilms and planktonic cells, bacterial cultures were inoculated in the Calgary Biofilm Device (minimal biofilm eradication concentration) in the presence of the metal salts. Copper, gallium and titanium were capable of preventing planktonic and biofilm growth, and eradicating established biofilms of all tested strains. Further, we observed that the efficacies of the other tested metal salts displayed variable efficacy against the tested strains. Further, contrary to the enhanced resistance anticipated from bacterial biofilms, particular metal salts were observed to be more effective against biofilm communities versus planktonic cells. In this study, we have demonstrated that the identity of the bacterial strain must be considered before treatment with a particular metal ion. Consequent to the use of metal ions as anti-microbial agents to fight multidrug-resistant and biofilm-related infections increases, we must aim for more selective deployment in a given infectious setting.

Journal ArticleDOI
TL;DR: Evidence that charge modification in the neutral peptide Gm cecropin D-like (WT) improved the antimicrobial activity of the modified peptides is contained.
Abstract: Antimicrobial peptides are effector molecules of the innate immune system against invading pathogens. The cationic charge in their structures has a strong correlation with antimicrobial activity, being responsible for the initial electrostatic interaction between peptides and the anionic microbial surface. This paper contains evidence that charge modification in the neutral peptide Gm cecropin D-like (WT) improved the antimicrobial activity of the modified peptides. Two cationic peptides derived from WT sequence named as ΔM1 and ΔM2, with net charge of +5 and +9, respectively, showed at least an eightfold increase in their antimicrobial activity in comparison to WT. The mechanism of action of these peptides was investigated using small unilamellar vesicles (SUVs) as model membranes. To study permeabilization effects of the peptides on cell membranes, entrapped calcein liposomes were used and the results showed that all peptides induced calcein release from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) SUVs, whereas in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), POPC/POPG and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE)/POPG SUVs, only ΔM1 and ΔM2 induced a notable permeabilization. In addition, interactions of these peptides with phospholipids at the level of the glycerol backbone and hydrophobic domain were studied through observed changes in generalized polarization and fluorescence anisotropy using probes such as Laurdan and DPH, respectively. The results suggest that peptides slightly ordered the bilayer structure at the level of glycerol backbone and on the hydrophobic core in 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) SUVs, whereas in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/DMPG SUVs, only ΔM1 and ΔM2 peptides increased the order of bilayers. Thus, peptides would be inducing clustering of phospholipids creating phospholipid domains with a higher phase transition temperature.

Journal ArticleDOI
TL;DR: Among Julian’s areas of study and accomplishment are fungal toxins including α-sarcin, chemical synthesis of triterpenes, mode of action of streptomycin and other aminoglycoside antibiotics, biochemical mechanisms of antibiotic resistance in clinical isolates of bacteria harboring resistance plasmids, their origins and evolution, secondary metabolism of microorganisms.
Abstract: We are pleased to dedicate this paper to Dr Julian E Davies. Julian is a giant among microbial biochemists. He began his professional career as an organic chemistry PhD student at Nottingham University, moved on to a postdoctoral fellowship at Columbia University, then became a lecturer at the University of Manchester, followed by a fellowship in microbial biochemistry at Harvard Medical School. In 1965, he studied genetics at the Pasteur Institute, and 2 years later joined the University of Wisconsin in the Department of Biochemistry. He later became part of Biogen as Research Director and then President. After Biogen, Julian became Chair of the Department of Microbiology at the University of British Columbia in Vancouver, Canada, where he has contributed in a major way to the reputation of this department for many years. He also served as an Adjunct Professor at the University of Geneva. Among Julian's areas of study and accomplishment are fungal toxins including α-sarcin, chemical synthesis of triterpenes, mode of action of streptomycin and other aminoglycoside antibiotics, biochemical mechanisms of antibiotic resistance in clinical isolates of bacteria harboring resistance plasmids, their origins and evolution, secondary metabolism of microorganisms, structure and function of bacterial ribosomes, antibiotic resistance mutations in yeast ribosomes, cloning of resistance genes from an antibiotic-producing microbe, gene cloning for industrial purposes, engineering of herbicide resistance in useful crops, bleomycin-resistance gene in clinical isolates of Staphylococcus aureus and many other topics. He has been an excellent teacher, lecturing in both English and French around the world, and has organized international courses. Julian has also served on the NIH study sections, as Editor for several international journals, and was one of the founders of the journal Plasmid. We expect the impact of Julian's accomplishments to continue into the future.