scispace - formally typeset
Search or ask a question

Showing papers in "Tissue & Cell in 2017"


Journal ArticleDOI
TL;DR: This review provides a detailed background on the peritoneal anatomy, microenvironment and immunologic responses which is essential to generate new hypotheses for future research.
Abstract: The peritoneum is an extensive serous organ with both epithelial and mesenchymal features and a variety of functions. Diseases such as inflammatory peritonitis and peritoneal carcinomatosis can induce disturbance of the complex physiological functions. To understand the peritoneal response in disease, normal embryonic development, anatomy in healthy conditions and physiology of the peritoneum have to be understood. This review aims to summarize and discuss the literature on these basic peritoneal characteristics. The peritoneum is a dynamic organ capable of adapting its structure and functions to various physiological and pathological conditions. It is a key element in regulation of inflammatory responses, exchange of peritoneal fluid and prevention of fibrosis in the abdominal cavity. Disturbance of these mechanisms may lead to serious conditions such as the production of large amounts of ascites, the generation of fibrotic adhesions, inflammatory peritonitis and peritoneal carcinomatosis. The difficulty to treat diseases, such as inflammatory peritonitis and peritoneal carcinomatosis, stresses the necessity for new therapeutic strategies. This review provides a detailed background on the peritoneal anatomy, microenvironment and immunologic responses which is essential to generate new hypotheses for future research.

120 citations


Journal ArticleDOI
TL;DR: A new approach to provoke the regeneration of the dentin-pulp complex after a pulpectomy is introduced, so that exogenous growth factors and the scaffold are able to induce cells and blood vessels from the residual dental pulp in the tooth root canal.
Abstract: Dental pulp is a highly specialized tissue that preserves teeth. It is important to maintain the capabilities of dental pulp before a pulpectomy by creating a local restoration of the dentin-pulp complex from residual dental pulp. The articles identified were selected by two reviewers based on entry and exit criteria. All relevant articles indexed in PubMed, Springer, Science Direct, and Scopus with no limitations from 1961 to 2016 were searched. Factors investigated in the selected articles included the following key words: Dentin-Pulp Complex, Regeneration, Tissue Engineering, Scaffold, Stem Cell, and Growth Factors. Of the 233 abstracts retrieved, the papers which were selected had evaluated the clinical aspects of the application of dentin-pulp regeneration. Generally, this study has introduced a new approach to provoke the regeneration of the dentin-pulp complex after a pulpectomy, so that exogenous growth factors and the scaffold are able to induce cells and blood vessels from the residual dental pulp in the tooth root canal. This study further presents a new strategy for local regeneration therapy of the dentin-pulp complex. This review summarizes the current knowledge of the potential beneficial effects derived from the interaction of dental materials with the dentin-pulp complex as well as potential future developments in this exciting field.

49 citations


Journal ArticleDOI
TL;DR: The cellular functions regulated by GOLPH3 are explored and if and how they contribute to the oncogenic activity of this intriguing Golgi localized oncoprotein are discussed.
Abstract: The Golgi phosphoprotein 3 (GOLPH3) is encoded by a gene that is located in a region of the human genome that is often amplified in different solid tumours. GOLPH3, an evolutionary conserved phosphatidylinositol 4-phosphate (PI4P) binding protein, is mainly localised at trans Golgi network (TGN). It regulates several cellular functions like Golgi vesicular trafficking, Golgi glycosylation and mitochondrial cardiolipin production. Recently, GOLPH3 was discovered to be part of the DNA damage response signalling pathway, with a role in cell survival following DNA damage. In this review, we will explore the cellular functions regulated by GOLPH3 and discuss if and how they contribute to the oncogenic activity of this intriguing Golgi localized oncoprotein.

39 citations


Journal ArticleDOI
TL;DR: The results showed that the reprogramming method could obtain high efficiency single-cell cloning bovine iPSCs, and the efficiency of single cell cloning is 40%.
Abstract: Single-cell derived bovine induced pluripotent stem cells (iPSCs) were generated by the introduction of piggyBac transposons with CAG promoting transcription factors (Oct3/4, Sox2, Klf4 and cMyc) In the study, the bovine iPSCs colony from single cell could passage more than 50 passages after enzymatic dissociation into single cells These bovine iPSCs cells kept the normal karyotype and displayed dome shaped clones similar to mouse embryonic stem cells They showed pluripotency in many ways, including their expression of pluripotency markers, such as OCT3/4, NANOG, SOX2, SSEA1, SSEA4, and AP in immunofluorescence assay, Oct4, Nanog, Sox2, Klf4 and cMyc in RT-PCR Additionally, single-cell derived bovine iPSCs formed embryoid bodies and teratomas that all subsequently gave rise to differentiated cells from all three embryonic germ layers The results showed that our reprogramming method could obtain high efficiency single-cell cloning bovine iPSCs, and the efficiency of single cell cloning is 40%

35 citations


Journal ArticleDOI
TL;DR: CoQ10 or L-carnitine supplementation improves the functional and structural integrity of the myocardium and showed a noticeable effects in improving cardiac functions evidenced reducing serum enzymes as serum interleukin-1 beta (IL-1 β), tumor necrosis factor alpha (TNF-α), leptin, lactate dehydrogenase (LDH), Cardiotrophin- 1, Troponin-I and Trop onin-T.
Abstract: Doxorubicin (DOX) is a chemotherapeutic agent used for treatment of different cancers and its clinical usage is hindered by the oxidative injury-related cardiotoxicity. This work aims to declare if the harmful effects of DOX on heart can be alleviated with the use of Coenzyme Q10 (CoQ10) or L-carnitine. The study was performed on seventy two female Wistar albino rats divided into six groups, 12 animals each: Control group; DOX group (10mg/kg); CoQ10 group (200mg/kg); L-carnitine group (100mg/kg); DOX+CoQ10 group; DOX+L-carnitine group. CoQ10 and L-carnitine treatment orally started 5days before a single dose of 10mg/kg DOX that injected intraperitoneally (IP) then the treatment continued for 10days. At the end of the study, serum biochemical parameters of cardiac damage, oxidative stress indices, and histopathological changes were investigated. CoQ10 or L-carnitine showed a noticeable effects in improving cardiac functions evidenced reducing serum enzymes as serum interleukin-1 beta (IL-1 β), tumor necrosis factor alpha (TNF-α), leptin, lactate dehydrogenase (LDH), Cardiotrophin-1, Troponin-I and Troponin-T. Also, alleviate oxidative stress, decrease of cardiac Malondialdehyde (MDA), Nitric oxide (NO) and restoring cardiac reduced glutathione levels to normal levels. Both corrected the cardiac alterations histologically and ultrastructurally. With a visible improvements in α-SMA, vimentin and eNOS immunohistochemical markers. CoQ10 or L-carnitine supplementation improves the functional and structural integrity of the myocardium.

34 citations


Journal ArticleDOI
TL;DR: A review of the current state of knowledge on TMEM165 deficiencies in Congenital Disorders of Glycosylation as well as new data on function ofTMEM165 and some speculative models on TM EM165/Golgi functions are discussed.
Abstract: Congenital Disorders of Glycosylation (CDG) are rare inherited diseases causing glycosylation defects responsible for severe growth and psychomotor retardations in patients. Whereas most genetic defects affect enzymes directly involved in the glycosylation process, like glycosyltransferases or sugar transporters, recent findings revealed the impact of gene mutations on proteins implicated in both Golgi vesicular trafficking and ion homeostasis. TMEM165 is one of these deficient Golgi proteins found in CDG patients whose function in the secretory pathway has been deduced from several recent studies using TMEM165 deficient mammalian cells or yeast cells deficient in Gtd1p, the yeast TMEM165 ortholog. These studies actually confirm previous observations based on both sequence and predicted topology of this transmembrane protein and the phenotypes of human and yeast cells, namely that TMEM165 is very probably a transporter involved in ion homeostasis. Whereas the exact function of TMEM165 remains to be fully characterized, several studies hypothesize that TMEM165 could be a Golgi localized Ca2+/H+ antiporter. However, recent data also support the role of TMEM165 in Golgi Mn2+ homeostasis then arguing for a putative role of Mn2+ transporter for TMEM165 essential to achieve the correct N-glycosylation process of proteins in the secretory pathway. This manuscript is a review of the current state of knowledge on TMEM165 deficiencies in Congenital Disorders of Glycosylation as well as new data on function of TMEM165 and some speculative models on TMEM165/Golgi functions are discussed.

33 citations


Journal ArticleDOI
TL;DR: This work compares the phenotypes of the GCs in different organisms under these different conditions, in particular according to morphological criteria, and proposes a classified GC types that reflects the different features of theGC, and that depends on the different molecular machines.
Abstract: The Golgi complex (GC) is the central station of the secretory pathway, through which several paths of intracellular transport are connected. The main function of the GC is glycosylation of proteins and lipids, and their subsequent sorting. The structure of the GC is extremely complicated, although in general it is unbelievably similar across different cells types and under different functional and pathological conditions. However, there are also a lot of differences between the GCs in different cells and under different normal and pathological conditions. Here, we compare the phenotypes of the GCs in different organisms under these different conditions, in particular according to morphological criteria. We propose a classification of the GC types that reflects the different features of the GC, and that depends on the different molecular machines.

31 citations


Journal ArticleDOI
TL;DR: Investigating the impact of various SPCA2 N- and/or C-terminal truncations on SICE and Ca2+ transport activity of SPC a2 found that overexpression of S PCA2 increases the Ca 2+ content of non-ER stores, which depends on Orai1 and SPCa2 activity.
Abstract: Dysregulation of the Golgi/Secretory Pathway Ca2+ transport ATPase SPCA2 is implicated in breast cancer. During lactation and in luminal breast cancer types, SPCA2 interacts with the plasma membrane Ca2+ channel Orai1, promoting constitutive Ca2+ influx, which is termed store independent Ca2+ entry (SICE). The mechanism of SPCA2/Orai1 interaction depends on the N- and C-termini of SPCA2. These extensions may play a dual role in activating not only Orai1, but also Ca2+ transport into the Golgi/secretory pathway, which we tested by investigating the impact of various SPCA2 N- and/or C-terminal truncations on SICE and Ca2+ transport activity of SPCA2. C-terminal truncations impair SICE and SPCA2 activity, but also affect targeting, whereas N-terminal truncations affect targeting and inactivate SPCA2, but remarkably, SICE activation remains unaffected. Importantly, overexpression of SPCA2 increases the Ca2+ content of non-ER stores, which depends on Orai1 and SPCA2 activity. Thus, Orai1-mediated Ca2+-influx and SPCA2-mediated Ca2+ uptake activity into the Golgi/secretory pathway might be coupled possibly in a microdomain. This channel/pump complex may efficiently transfer Ca2+ into the secretory pathway, which might play a role in SPCA2-expressing secretory cells, such as mammary gland during lactation.

28 citations


Journal ArticleDOI
TL;DR: In this article, a commercially available polyester transwell membrane and a novel electrospun scaffold were used to generate realistic retinal pigment epithelium (RPE) cells.
Abstract: The Retinal Pigment Epithelium (RPE) forms the primary site of pathology in several blinding retinopathies. RPE cultures are being continuously refined so that dynamic disease processes in this important monolayer can be faithfully studied outside the eye over longer periods. The RPE substrate, which mimics the supportive Bruch’s membrane (BrM), plays a key role in determining how well in-vitro cultures recapitulate native RPE cells. Here, we evaluate how two different types of BrM substrates; (1) a commercially-available polyester transwell membrane, and (2) a novel electrospun scaffold developed in our laboratory, could support the generation of realistic RPE tissues in culture. Our findings reveal that both substrates were capable of supporting long-lasting RPE monolayers with structural and functional specialisations of in-situ RPE cells. These cultures were used to study autofluorescence and barrier formation, as well as activities such as outer-segment internalisation/trafficking and directional secretion of key proteins; the impairment of which underlies retinal disease. Hence, both substrates fulfilled important criteria for generating authentic in-vitro cultures and act as powerful tools to study RPE pathophysiology. However, RPE grown on electrospun scaffolds may be better suited to studying complex RPE-BrM interactions such as the formation of drusen-like deposits associated with early retinal disease.

27 citations


Journal ArticleDOI
TL;DR: The comprehension of the mechanism that induces Golgi fragmentation and of its downstream effects on neuronal function have the potential to contribute to the development of more effective therapies to treat or prevent some of these disorders.
Abstract: The Golgi apparatus is a central organelle of the secretory pathway involved in the post-translational modification and sorting of lipids and proteins. In mammalian cells, the Golgi apparatus is composed of stacks of cisternae organized in polarized manner, which are interconnected by membrane tubules to constitute the Golgi ribbon, located in the proximity of the centrosome. Besides the processing and transport of cargo, the Golgi complex is actively involved in the regulation of mitotic entry, cytoskeleton organization and dynamics, calcium homeostasis, and apoptosis, representing a signalling platform for the control of several cellular functions, including signalling initiated by receptors located at the plasma membrane. Alterations of the conventional Golgi organization are associated to many disorders, such as cancer or different neurodegenerative diseases. In this review, we examine the functional implications of modifications of Golgi structure in neurodegenerative disorders, with a focus on the role of Golgi fragmentation in the development of Alzheimer's disease. The comprehension of the mechanism that induces Golgi fragmentation and of its downstream effects on neuronal function have the potential to contribute to the development of more effective therapies to treat or prevent some of these disorders.

26 citations


Journal ArticleDOI
TL;DR: The present work suggests that HUC-MSCs may be an effective therapeutic agent against renal IRI with recorded data showed improvement of renal functions and urine albumin in HUC -MSCs than IRI group with positive antioxidant efficacy of H UC- MSCs through scavenging free radicals and supporting the antioxidant enzymes.
Abstract: Background Acute kidney injury (AKI) is a common clinical problem raising the urgent needs to develop new strategies for treatment. The present study investigated the therapeutic potential of human umbilical cord – mesenchymal stem cells (HUC-MSCs) transplantation against renal ischemia/reperfusion injury (IRI) in rats. Methods Twenty four male Wistar rats were assigned into two main groups, sham group (control group) and I/R group. I/R group was injected in the tail vein with either phosphate buffer saline (PBS) or HUC-MSCs. Results The HUC-MSCs improved kidney injury induced by I/R as demonstrated by enhancement of the kidney function via decreasing serum levels of creatinine, urea and uric acid. The therapeutic efficacy of HUC-MSCs were found to be mediated through anti-oxidant activity as indicated by significant reduction in total malondialdehyde (MDA) and significant increment in the levels of reduced glutathione (GSH), catalase (CAT) and glutathione-S-transferase (GST). Conclusion The present work suggests that HUC-MSCs may be an effective therapeutic agent against renal IRI. The recorded data showed improvement of renal functions and urine albumin in HUC-MSCs than IRI group with positive antioxidant efficacy of HUC-MSCs through scavenging free radicals and supporting the antioxidant enzymes.

Journal ArticleDOI
TL;DR: The present study provides a rationale for the exploration of nasal chondrocytes as a promising, potent and clinically feasible autologous cell source for putative IVD repair strategies.
Abstract: Chondrocyte based regenerative therapies for intervertebral disc repair such as Autologous Disc Cell Transplantation (ADCT, CODON) and allogeneic juvenile chondrocyte implantation (NuQu®, ISTO Technologies) have demonstrated good outcomes in clinical trials. However concerns remain with the supply demand reconciliation and issues surrounding immunoreactivity which exist for allogeneic-type technologies. The use of stem cells is challenging due to high growth factor requirements, regulatory barriers and differentiation towards a stable phenotype. Therefore, there is a need to identify alternative non-disc cell sources for the development and clinical translation of next generation therapies for IVD regeneration. In this study, we compared Nasal Chondrocytes (NC) as a non-disc alternative chondrocyte source with Articular Chondrocytes (AC) in terms of cell yield, morphology, proliferation kinetics and ability to produce key extracellular matrix components under 5% and 20% oxygen conditions, with and without exogenous TGF-β supplementation. Results indicated that NC maintained proliferative capacity with high amounts of sGAG and lower collagen accumulation in the absence of TGF-β supplementation under 5% oxygen conditions. Importantly, osteogenesis and calcification was inhibited for NC when cultured in IVD-like microenvironmental conditions. The present study provides a rationale for the exploration of nasal chondrocytes as a promising, potent and clinically feasible autologous cell source for putative IVD repair strategies.

Journal ArticleDOI
TL;DR: An overview of the current knowledge of the repertoire of functions of peroxisomes in various model systems is presented to present an overview of their role in human health and disease.
Abstract: Research spanning almost 50 years has highlighted unique characteristics and irreplaceable list of diverse functions performed by peroxisomes in various model systems. Peroxisomes are single membrane bound highly dynamic organelles ubiquitous to most eukaryotic cells. Proliferation by division of pre-existing organelles and the role of endoplasmic reticulum in the biogenesis of these organelles is now well established. The earliest identified conserved functions of peroxisomes are β-oxidation of fatty acids and reactive oxygen species metabolism. Several studies over the last few decades have reported the importance of this organelle and its numerous cell type, tissue and environment-dependent functions. Their role in several aspects of human health and disease is now under investigation. Studies related to peroxisome biology and functions are now also extended to diverse model systems like Drosophila melanogaster, trypanosomatids, etc. Peroxisomes also intricately collaborate and carry out these functions together with several other organelles in a cell. In this review, we aim to present an overview of our current knowledge of the repertoire of functions of peroxisomes in various model systems.

Journal ArticleDOI
TL;DR: A combination of bioceramics and biopolymeric nanofibers hold valuable promising potentials to use for bone tissue engineering application and regenerative medicine.
Abstract: Horses with big bone fractures have low chance to live mainly due to the lake of a proper treatment strategy. We believe that further attempts in equine bone tissue engineering will probably be required to meet all the needs for the lesion therapies. Therefore in this study we aimed to investigate the osteogenic differentiation capacity of equine adipose-derived stem cells (e-ASCs) on nano-bioactive glass (nBGs) coated poly( l -lactic acid) (PLLA) nanofibers scaffold (nBG-PLLA). Using electrospinning technique, PLLA scaffold was prepared successfully and coated with nBGs. Fabricated nanofibers were characterized by MTT, SEM, and FTIR analyses, and then osteogenic differentiation potential of isolated e-ASCs was investigated by the most key osteogenic markers, namely Alizarin red-S, ALP, calcium content and bone related (RUNX2, Collagen I, Osteonectin, and ALP) gene markers. Our results indicated that nBGs was successfully coated on PLLA scaffold and this scaffold had no negative (p > 0.05) effect on cell growth rate as indicated by MTT assay. Moreover, e-ASCs that differentiated on nBGs-PLLA scaffold showed a higher (p

Journal ArticleDOI
TL;DR: Improvement of cell attachment and proliferation may be mediated by differences in the amount of wettability after exposure of scaffold to culture medium for long term which, in turn, causes more protein adsorption in the surface of silk fibroin scaffold (decreased roughness).
Abstract: Cell behaviours such as proliferation and attachment can be affected by the length of pre-incubation period of the scaffolds in the culture medium for long term. The aim of this study was to investigate the long term pre-incubation of 3D silk fibroin scaffolds in complete culture medium on cell attachment and proliferation. After the preparation of silk fibroin scaffolds by the technique of freeze drying, the scaffolds were pre-incubated in complete culture medium for 2 d, 6 d or 10 d before apical papilla stem cells (SCAP) seeding. Modifications of the scaffold surface and wettability were examined by FE-SEM and water contact angle, respectively. Results showed a decrease both in roughness and water contact angle as pre-incubation time increases. DNA measurement after 18h and 10 d cell seeding showed a significant increase of DNA concentration which represents better attachment and proliferation with pre-incubation time increase. Qualitative examination, live&dead assay or H&E staining method after 30h and 10 d cell seeding respectively, indicated that pre-incubation of scaffolds has time dependent effect on cell proliferation and attachment. This suggests that improvement of cell attachment and proliferation may be mediated by differences in the amount of wettability (decreased water contact angle) after exposure of scaffold to culture medium for long term which, in turn, causes more protein adsorption in the surface of silk fibroin scaffold (decreased roughness).

Journal ArticleDOI
Qiong Shen1, Wei-Rong Yu1, Yong Fang1, Min Yao1, Penggao Yang1 
TL;DR: The expression of β-catenin can activate the nuclear gene c-myc and regulate the expression of transit-amplifying cell markers K15, K19, a6-Integrin and β1-integrin, indicating that β- catenin is involved in the transformation process from hair follicle stem cells to transit-Amplifying cells and suggesting that β -caten in plays an important biological role in the induction of this differentiation process.
Abstract: Hair follicle stem cells play important roles in maintaining homeostasis and skin tissue self-renewal. Transit-amplifying cells represent the transition of cells from hair follicle stem cells into differentiated epidermal cells. Thus far, the signaling pathway and the molecular biological mechanism that regulate the proliferation and differentiation of hair follicle stem cells remain unclear. In this paper, we studied the relationship between β-catenin and c-myc during the process of the differentiation of hair follicle stem cells into transit-amplifying cells. Based on our results, the expression of β-catenin can activate the nuclear gene c-myc and regulate the expression of transit-amplifying cell markers K15, K19, a6-integrin and β1-integrin, indicating that β-catenin is involved in the transformation process from hair follicle stem cells to transit-amplifying cells and suggesting that β-catenin plays an important biological role in the induction of this differentiation process.

Journal ArticleDOI
TL;DR: The impact of IL-37 on inflammatory cytokines mediating atherosclerosis is beneficial and protective, however, more studies are needed to better define this mechanism and the safety and tolerability ofIL-37.
Abstract: In atherosclerosis lipoproteins stimulate the innate immune response, leading to the release of inflammatory cytokines and chemokines. Hypercholesterolemia may activate the synthesis and release of inflammatory cytokines such as IL-1, which induces TNF release in mast cells (MCs). IL-1 and IL-1 family members orchestrate a broadening list of inflammatory diseases, including atherosclerosis. MCs are implicated in the pathophysiology of several diseases including allergy and inflammation. Activated MCs, located perivascularly, contribute to inflammation in atherosclerosis by producing inflammatory cytokines. MC IL-1-activation leads to the immediate release of inflammatory chemical mediators and TNF, and late inflammatory compounds such as cytokines. MCs can be activated by exogenous cytokines, antigens, microbial products (LPS) and neurotransmitters and generate IL-1 beta, TNF and several other inflammatory cytokines/chemokines along with PGD2, leukotrienes, histamine and proteases. MCs activated with IL-1 induce selective release of IL-6 without degranulation. TNF emerges as one of the most potent inflammatory cytokines involved in the response due to LDL. Cytokines, such as IL-1, IL-6, IL-33 and TNF, are generated in the inflammatory sites by both macrophages and MCs, mediating atherosclerosis. IL-37 (IL-1 family member 7) binds IL-18Ra chain and acts by an intracellular mechanism down-regulating the expression of pro-inflammatory signals cJun, MAP kinase p38a, STAT transcription factors and p53. Blocking IL-1 with IL-37 alleviates the symptoms in patients with inflammatory diseases including arteriosclerosis. The impact of IL-37 on inflammatory cytokines mediating atherosclerosis is beneficial and protective. However, more studies are needed to better define this mechanism and the safety and tolerability of IL-37.

Journal ArticleDOI
TL;DR: The histopathological impact of dengue virus (serotype DENV-2) infection in livers of BALB/c mice is characterized to investigate the effects of novel drugs, such as recently developed nano-formulations, and the relative recovery ability with intact immune functions of host.
Abstract: In this research, we characterized the histopathological impact of dengue virus (serotype DENV-2) infection in livers of BALB/c mice. The mice were infected with different doses of DENV-2 via intraperitoneal injection and liver tissues were processed for histological analyses and variation was documented. In the BALB/c mouse model, typical liver tissues showed regular hepatocyte architecture, with normal endothelial cells surrounding sinusoid capillary. Based on histopathological observations, the liver sections of BALB/c mice infected by DENV-2 exhibited a loss of cell integrity, with a widening of the sinusoidal spaces. There were marked increases in the infiltration of mononuclear cells. The areas of hemorrhage and micro- and macrovesicular steatosis were noted. Necrosis and apoptosis were abundantly present. The hallmark of viral infection, i.e., cytopathic effects, included intracellular edema and vacuole formation, cumulatively led to sinusoidal and lobular collapse in the liver. The histopathological studies on autopsy specimens of fatal human DENV cases are important to shed light on tissue damage for preventive and treatment modalities, in order to manage future DENV infections. In this framework, the method present here on BALB/c mouse model may be used to study not only the effects of infections by other DENV serotypes, but also to investigate the effects of novel drugs, such as recently developed nano-formulations, and the relative recovery ability with intact immune functions of host.

Journal ArticleDOI
TL;DR: It is demonstrated that osteoblast activation through CD73 activity is essential during bone repair in aging mice, and it may present a drugable target for future biomimetic therapeutic approaches that aim at enhancing bone formation in the elderly patients.
Abstract: Ecto-5'-nucleotidase (CD73) generates adenosine, an osteoblast activator and key regulator of skeletal growth. It is unknown, however, if CD73 regulates osteogenic differentiation during fracture healing in adulthood, and in particular how CD73 activity regulates intramembranous bone repair in the elderly. Monocortical tibial defects were created in 46-52-week-old wild type (WT) and CD73 knock-out mice (CD73-/-) mice. Injury repair was analyzed at post-operative days 5, 7, 14 and 21 by micro-computed tomography (micro-CT), histomorphometry, proliferating cell nuclear antigen (PCNA) immunostaining, alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) histochemistry. Middle-aged CD73 knock-out mice exhibited delayed bone regeneration and significantly reduced bone matrix deposition detected by histomorphometry and micro-CT. Cell proliferation, ALP activity and osteoclast number were reduced in the CD73-/- mice, suggesting a combined defect in bone formation and resorption due the absence of CD73 activity in this model of intramembranous bone repair. Results from this study demonstrate that osteoblast activation through CD73 activity is essential during bone repair in aging mice, and it may present a drugable target for future biomimetic therapeutic approaches that aim at enhancing bone formation in the elderly patients.

Journal ArticleDOI
TL;DR: The histopathological profile revealed that the bivalve was adapted to maintain a steady immune profile by incurring degeneration of its own tissue structure byincurring degenerated tissue structure under nutrient limited condition.
Abstract: Complete or partial depletion of resource in a freshwater habitat is a common phenomenon. As a consequence, aquatic fauna including bivalve molluscs may be exposed to dietary stress on a seasonal basis. Haemocyte based innate immune profile of the freshwater mollusc Lamellidens marginalis (Bivalvia: Eulamellibranchiata) was evaluated under starvation induced stress for a maximum period of 32 days in a controlled laboratory condition. During starvation, the bivalve haemocytes maintained a homeostasis in phagocytic efficacy and nitric oxide generation ability with respect to the control. The mollusc maintained a significantly high protein content in its haemolymph and tissues under the nutritional stress with respect to the control. The dietary stress had no significant impact on the activity of digestive tissue derived α-amylase till sixteenth day but by 32 days the enzyme activity went down significantly. The histopathological profile revealed that the bivalve was adapted to maintain a steady immune profile by incurring degeneration of its own tissue structure. The total haemocyte count surged significantly till 16 days but differed insignificantly with respect to the control at 32 days implying probable haematopoietic exhaustion. The study reflects the instinctive urge of the bivalve to maintain immune physiology at heavy metabolic cost under nutrient limited condition.

Journal ArticleDOI
TL;DR: A non-invasive, integrated method for early detection of cellular abnormalities amongst habitual smokers based on analysis of different cyto-morphological features of exfoliative oral epithelial cells is described.
Abstract: Habitual smokers are known to be at higher risk for developing oral cancer, which is increasing at an alarming rate globally. Conventionally, oral cancer is associated with high mortality rates, although recent reports show the improved survival outcomes by early diagnosis of disease. An effective prediction system which will enable to identify the probability of cancer development amongst the habitual smokers, is thus expected to benefit sizable number of populations. Present work describes a non-invasive, integrated method for early detection of cellular abnormalities based on analysis of different cyto-morphological features of exfoliative oral epithelial cells. Differential interference contrast (DIC) microscopy provides a potential optical tool as this mode provides a pseudo three dimensional (3-D) image with detailed morphological and textural features obtained from noninvasive, label free epithelial cells. For segmentation of DIC images, gradient vector flow snake model active contour process has been adopted. To evaluate cellular abnormalities amongst habitual smokers, the selected morphological and textural features of epithelial cells are compared with the non-smoker (-ve control group) group and clinically diagnosed pre-cancer patients (+ve control group) using support vector machine (SVM) classifier. Accuracy of the developed SVM based classification has been found to be 86% with 80% sensitivity and 89% specificity in classifying the features from the volunteers having smoking habit.

Journal ArticleDOI
TL;DR: Reduction in inflammatory/angiogenic potential of the chondrogenically differentiated constructs highlights the superior effectiveness of PRP in comparison to TGFβ for chONDrogenic differentiation, yet further improvement of the PRP-based chondrogensic differentiation media is required to inhibit the production of angiogenic/inflammatory markers, calcification and the release of synthesized GAG out of the construct.
Abstract: Background Optimization of the differentiation medium through using autologous factors such as PRP is of great consideration, but due to the complex, variable and undefined composition of PRP on one hand and lack of control over the absolute regulatory mechanisms in in vitro conditions or disrupted and different mechanisms in diseased tissue microenvironments in in vivo conditions on the other hand, it is complicated and rather unpredictable to get the desired effects of PRP making it inevitable to monitor the possible pathologic or undesired differentiation pathways and therapeutic effects of PRP. Therefore, in this study the probable potential of PRP on inducing calcification, inflammation and angiogenesis in chondrogenically-differentiated cells was investigated. Methods The expressions of chondrogenic, inflammatory, osteogenic and angiogenic markers from TGFβ or PRP-treated cells during chondrogenic differentiation of human adipose-derived stem cells (ADSCs) was evaluated. Expressions of Collagen II (Col II), Aggrecan, Sox9 and Runx2 were quantified using q-RT PCR. Expression of Col II and X was investigated by immunocytochemistry as well. Glycosaminoglycans (GAGs) production was also determined by GAG assay. Possible angiogenic/inflammatory potential was determined by quantitatively measuring the secreted VEGF, TNFα and phosphorylated VEGFR2 via ELISA. In addition, the calcification of the construct was monitored by measuring ALP activity and calcium deposition. Results Our data showed that PRP positively induced chondrogenesis; meanwhile the secretion of angiogenic and inflammatory markers was decreased. VEGFR2 phosphorylation and ALP activity had a decreasing trend, but tissue mineralization was enhanced upon treating with PRP. Conclusions Although reduction in inflammatory/angiogenic potential of the chondrogenically differentiated constructs highlights the superior effectiveness of PRP in comparison to TGFβ for chondrogenic differentiation, yet further improvement of the PRP-based chondrogenic differentiation media is required to inhibit the production of angiogenic/inflammatory markers, calcification and the release of synthesized GAG out of the construct.

Journal ArticleDOI
TL;DR: Some of the recent work that explores links between form and function of the Golgi complex, Rho GTPases and cancer are highlighted.
Abstract: The Golgi complex is the central unit of the secretory pathway, modifying, processing and sorting proteins and lipids to their correct cellular localisation. Changes to proteins at the Golgi complex can have deleterious effects on the function of this organelle, impeding trafficking routes through it, potentially resulting in disease. It is emerging that several Rho GTPase proteins, namely Cdc42, RhoBTB3, RhoA and RhoD are at least in part localised to the Golgi complex, and a number of studies have shown that dysregulation of their levels or activity can be associated with cellular changes which ultimately drive cancer progression. In this mini-review we highlight some of the recent work that explores links between form and function of the Golgi complex, Rho GTPases and cancer.

Journal ArticleDOI
TL;DR: Chronic treatment with sildenafil citrate (Viagra) caused toxic effect on the structure of the retina and optic nerve of the rat, and partial recovery was observed after drug withdrawal.
Abstract: Background Abnormal vision has been reported by 3% of patients treated with sildenafil citrate (Viagra). Although many men use Viagra for an extended period for treatment of erectile dysfunction, the implications of the long term-daily use of it on the retina and optic nerve are unclear. Aim of the work To investigate the effect of chronic daily use of sildenafil citrate in a dose equivalent to men preferred therapeutic dose on the histology of the retina and optic nerve of adult male rat. Material & methods Eighteen adult male Wistar rats were equally divided into three groups. Group I: control. Group II: treated with sildenafil citrate orally (10 mg/kg/day) for 8 weeks. Group III (withdrawal): treated as group II and then left for 4 weeks without treatment. Specimens from the retina and optic nerve were processed for light and electron microscopy. Results In sildenafil citrate treated group, the retina and optic nerve revealed vacuolations and congested blood capillaries with apoptotic endothelial and pericytic cells, and thickened basal lamina. Caspase-3 (apoptotic marker) and CD31 (endothelial marker) expression increased. Glial cells revealed morphological changes: Muller cells lost their processes, activated microglia, astrocytic clasmatodendrosis, degenerated oligodendrocytes surrounded by disintegrated myelin sheathes of the optic nerve fibers. The retina and optic nerve of the withdrawal group revealed less vacuolations and congestion, and partial recovery of the glial cells. Conclusion Chronic treatment with sildenafil citrate (Viagra) caused toxic effect on the structure of the retina and optic nerve of the rat. Partial recovery was observed after drug withdrawal.

Journal ArticleDOI
TL;DR: In conclusion, overexpression of SOCS-1 prevented TNF-α-mediated cell oxidative stress and apoptosis may be via suppression of JAK/STAT signaling pathway activation in HKCs.
Abstract: Tumor necrosis factor-α (TNF-α) is suggested to induce mitochondrial dysfunction and apoptosis of renal tubular epithelial cells that possibly exacerbates renal function in chronic kidney disease (CKD). Here we investigated whether suppressor of cytokine signaling-1 (SOCS-1), an inhibitor of cytokine signaling, was involved in TNF-α-induced human renal tubular epithelial cells (HKCs) oxidative stress and apoptosis. TNF-α promoted the protein and mRNA expression of SOCS-1 in a time and dose dependent manner, along with increased cell apoptosis and activation of apoptosis signal regulating kinase-1(ASK1) in HKCs. Furthermore, overexpression of SOCS-1 in HKCs reduced TNF-α-mediated oxidative stress and apoptosis. Meanwhile, We also found that overexpression of SOCS-1 could regulate the activity of JAK/STAT signaling pathway. In addition, a specific JAK2 inhibitor, AG490, that both attenuated TNF-α-induced oxidative stress, also reduced apoptosis. Taken together, overexpression of SOCS-1 prevented TNF-α-mediated cell oxidative stress and apoptosis may be via suppression of JAK/STAT signaling pathway activation in HKCs.

Journal ArticleDOI
TL;DR: Results indicated that DPSCs could promote PC-3 cancer cell proliferation and metastasis in co-culture conditions in vitro.
Abstract: Cancer as a multistep and complicated disease is regulated by several molecular and cellular events. Cancer treatment could be managed at the early stages when the tumor is confined in the tissue. However, disseminated cancer cells metastasize to other body parts and generate new tumors resulting in mortality. Mesenchymal stem cells (MSCs) are found in different body parts and helps adult tissue regeneration. The role of MSCs in cancer progression has emerged as one of the important aspects in cancer biology and is the aim of interest in recent years. In the current study, effects of Dental Pulp Stem Cells (DPSCs) on PC-3 prostate cancer cell proliferation and migration were conducted by cell proliferation, apoptosis, gene expression and cell migration analysis in vitro. Condition medium (CM) obtained from DPSCs increased cell proliferation of PC-3 cells and decreased apoptosis. Either administration of CM or trans well co-culture of DPSCs increased cell migration in scratch assay, confirmed by gene expression analysis of migratory genes including fibronectin, laminin and collagen type I (Col I). Furthermore, DPSCs participated in a self-organized structure with PC-3 cells in co-culture conditions. Overall, results indicated that DPSCs could promote PC-3 cancer cell proliferation and metastasis in co-culture conditions in vitro.

Journal ArticleDOI
TL;DR: The clinical-grade ASCs prepared with this new method, less than ten passages, was safe for clinical trials and expression level of tumor relevant genes and cytokines at different passages had no significant difference.
Abstract: Objective A new method was presented to prepare clinical-grade human adipose-derived stromal stem cells (ASCs) and its safety in vitro , such as biological characteristics and genetic features alteration were investigated. Methods The morphology of the ASCs which were cultured in vitro using serum-free medium was observed. Cell cycle and CD markers profile were tested by flow cytometry, while karyotype was analyzed by the chromosome G-banding technology. Growth factors expression was tested by ELISA and tumor-related genes were analyzed by the real-time PCR, respectively. Results ASCs were adult stem cells with spindle shape. The proliferation ratio of ASCs began to slow down after 10 passages, and was significant after 15 passages. Cell cycle analysis revealed that the percentage of G2 phase and S phase cells was stable. There was no obvious missing, translocation or dislocation in terms of karyotype. Expression level of tumor relevant genes and cytokines at different passages had no significant difference. Conclusions The clinical-grade ASCs prepared with this new method, less than ten passages, was safe for clinical trials.

Journal ArticleDOI
TL;DR: A detailed immunohistochemical description of vasotocin (AVT) cell populations and their projections in two species of weakly electric fish with different social structure, Gymnotus omarorum and Brachyhypopomus gauderio, finds that no gross anatomical differences in the organization of the AVT system account for functional differences between species.
Abstract: Hypothalamic nonapeptides (arginin vasotocin-vasopressin, oxytocin-isotocin) are known to modulate social behaviors across vertebrates. The neuroanatomical conservation of nonapeptide systems enables the use of novel vertebrate model species to identify general strategies of their functional mechanisms. We present a detailed immunohistochemical description of vasotocin (AVT) cell populations and their projections in two species of weakly electric fish with different social structure, Gymnotus omarorum and Brachyhypopomus gauderio. Strong behavioral, pharmacological, and electrophysiological evidence support that AVT modulation of electric behavior differs between the gregarious B. gauderio and the solitary G. omarorum. This functional diversity does not necessarily depend on anatomical differences of AVT neurons. To test this, we focus on interspecific comparisons of the AVT system in basal non-breeding males along the brain. G. omarorum and B. gauderio showed similar AVT somata sizes and comparable distributions of AVT somata and fibers. Interestingly, AVT fibers project to areas related to the control of social behavior and electromotor displays in both species. We found that no gross anatomical differences in the organization of the AVT system account for functional differences between species, which rather shall depend on the pattern of activation of neurons embedded in the same basic anatomical organization of the AVT system.

Journal ArticleDOI
TL;DR: Significant increase in cellular proliferation as well as decrease in apoptosis in both epidermis and dermis in fish treated with asiaticoside compared to sham and vehicle control fish is observed at different intervals of wound repair.
Abstract: In the present study effect of asiaticoside, on healing of skin wounds in Cirrhinus mrigala is reported. Skin wound, approx. 2mm in diameter was excised using sterile disposable biopsy punch. Immediately after infliction of the wound, epidermis from wound edge starts migrating as thin sheet toward wound gap. Fronts of migrating epidermis gradually advance, and results in complete epithelialization of wound. Experiments were conducted for 30days and fishes were divided into control, sham, vehicle control and asiaticoside treated groups. Immunohistochemical localization of proliferating cell nuclear antigen positive cells indicating cellular proliferation and caspase 3 positive cells reflecting apoptosis was carried out and their density at different post wound intervals in each fish group was analyzed. Significant increase in cellular proliferation as well as decrease in apoptosis in both epidermis and dermis in fish treated with asiaticoside compared to sham and vehicle control fish is observed at different intervals of wound repair. This suggests that in treated group healing of skin wounds in fish is enhanced than in sham and vehicle control groups. Asiaticoside treatment in healing of skin wounds would greatly be beneficial to fish farmers as it could protect fish from invasion of pathogens and check fish mortality.

Journal ArticleDOI
TL;DR: In this paper, the authors compared the efficiency of mesenchymal stem cells (MSCs) and chitosan dressing, alone or in combination treatment on wound healing, and revealed advanced granulation tissue formation and epithelialization in wounds treated with MSCs, and may suggest this treatment as an effective applicant in wound healing process.
Abstract: Background Chronic wounds present a major challenge in modern medicine. Even under optimal conditions, the healing process may lead to scarring and fibrosis. The ability of mesenchymal stem cells (MSCs) to differentiate into other cell types makes these cells an attractive therapeutic tool for cell transplantation. Both tissue-engineered construct and MSC therapy are among the current wound healing procedures and potential care. Chitosan has been widely applied in tissue engineering because of its biocompatibility and biodegradability. Aim The aim of the current work was to compare the efficiency of MSCs and chitosan dressing, alone or in combination treatment on wound healing. Methods This study was conducted on 15 rabbits, which were randomly divided in 3 groups based on the type of treatment with MSCs, chitosan dressing and combination of both. A full–thickness skin defect was excised from the right and left side of the back of each animals. Defects on right sides were filled with treatments and left side defects were left as control. Evaluation of the therapeutic effectiveness was performed through a variety of clinical and microscopical evaluations and measurements of the process of wound healing on days 7, 14, 21, and 28. Histological evaluation of wound healing was classified by different scoring systems. Results The data indicated that wounds treated with bone marrow derived MSC had enhanced cellularity and better epidermal regeneration. During the early stages of wound healing, the closure rate of bone marrow derived MSC-treated wounds were significantly higher than other treatments ( P ). Although the MSCs in the wound edges enhance the healing of the full–thickness wound, the healing process of chitosan treatment was slower than the control group. Conclusion This study revealed advanced granulation tissue formation and epithelialization in wounds treated with MSCs, and may suggests this treatment as an effective applicant in wound healing process. Chitosan scaffold dressings, whether alone or in combination with MSCs, have worsened the wound healing as compared to the control group.