scispace - formally typeset
Open AccessJournal ArticleDOI

A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations

Herman Chernoff
- 01 Dec 1952 - 
- Vol. 23, Iss: 4, pp 493-507
TLDR
In this paper, it was shown that the likelihood ratio test for fixed sample size can be reduced to this form, and that for large samples, a sample of size $n$ with the first test will give about the same probabilities of error as a sample with the second test.
Abstract
In many cases an optimum or computationally convenient test of a simple hypothesis $H_0$ against a simple alternative $H_1$ may be given in the following form. Reject $H_0$ if $S_n = \sum^n_{j=1} X_j \leqq k,$ where $X_1, X_2, \cdots, X_n$ are $n$ independent observations of a chance variable $X$ whose distribution depends on the true hypothesis and where $k$ is some appropriate number. In particular the likelihood ratio test for fixed sample size can be reduced to this form. It is shown that with each test of the above form there is associated an index $\rho$. If $\rho_1$ and $\rho_2$ are the indices corresponding to two alternative tests $e = \log \rho_1/\log \rho_2$ measures the relative efficiency of these tests in the following sense. For large samples, a sample of size $n$ with the first test will give about the same probabilities of error as a sample of size $en$ with the second test. To obtain the above result, use is made of the fact that $P(S_n \leqq na)$ behaves roughly like $m^n$ where $m$ is the minimum value assumed by the moment generating function of $X - a$. It is shown that if $H_0$ and $H_1$ specify probability distributions of $X$ which are very close to each other, one may approximate $\rho$ by assuming that $X$ is normally distributed.

read more

Citations
More filters
Journal ArticleDOI

On the multifractal analysis of measures

TL;DR: The multifractal formalism is shown to hold for a large class of measures as discussed by the authors, which is the case for many of the measures we consider in this paper. But it is not applicable to all measures.
Journal ArticleDOI

Pac-bayesian generalisation error bounds for gaussian process classification

TL;DR: By applying the PAC-Bayesian theorem of McAllester (1999a), this paper proves distribution-free generalisation error bounds for a wide range of approximate Bayesian GP classification techniques, giving a strong learning-theoretical justification for the use of these techniques.
Posted Content

On the concrete hardness of Learning with Errors.

TL;DR: In this article, the authors present hardness results for concrete instances of LWE and give concrete estimates for various families of instances, provide a Sage module for computing these estimates and highlight gaps in the knowledge about algorithms for solving the Learning with Errors problem.
MonographDOI

Localization Algorithms and Strategies for Wireless Sensor Networks: Monitoring and Surveillance Techniques for Target Tracking

Guoqiang Mao, +1 more
TL;DR: In this paper, the authors provide a comprehensive and up-to-date coverage of topics and fundamental theories underpinning measurement techniques and localization algorithms in WSNs. And they provide relevant references and the latest studies emerging out of the wireless sensor network field.
References
More filters