scispace - formally typeset
Journal ArticleDOI

A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations

01 Dec 1952-Annals of Mathematical Statistics (Institute of Mathematical Statistics)-Vol. 23, Iss: 4, pp 493-507

TL;DR: In this paper, it was shown that the likelihood ratio test for fixed sample size can be reduced to this form, and that for large samples, a sample of size $n$ with the first test will give about the same probabilities of error as a sample with the second test.

AbstractIn many cases an optimum or computationally convenient test of a simple hypothesis $H_0$ against a simple alternative $H_1$ may be given in the following form. Reject $H_0$ if $S_n = \sum^n_{j=1} X_j \leqq k,$ where $X_1, X_2, \cdots, X_n$ are $n$ independent observations of a chance variable $X$ whose distribution depends on the true hypothesis and where $k$ is some appropriate number. In particular the likelihood ratio test for fixed sample size can be reduced to this form. It is shown that with each test of the above form there is associated an index $\rho$. If $\rho_1$ and $\rho_2$ are the indices corresponding to two alternative tests $e = \log \rho_1/\log \rho_2$ measures the relative efficiency of these tests in the following sense. For large samples, a sample of size $n$ with the first test will give about the same probabilities of error as a sample of size $en$ with the second test. To obtain the above result, use is made of the fact that $P(S_n \leqq na)$ behaves roughly like $m^n$ where $m$ is the minimum value assumed by the moment generating function of $X - a$. It is shown that if $H_0$ and $H_1$ specify probability distributions of $X$ which are very close to each other, one may approximate $\rho$ by assuming that $X$ is normally distributed.

...read more


Citations
More filters
Book
01 Jan 2005

9,031 citations

Book ChapterDOI
TL;DR: In this article, upper bounds for the probability that the sum S of n independent random variables exceeds its mean ES by a positive number nt are derived for certain sums of dependent random variables such as U statistics.
Abstract: Upper bounds are derived for the probability that the sum S of n independent random variables exceeds its mean ES by a positive number nt. It is assumed that the range of each summand of S is bounded or bounded above. The bounds for Pr {S – ES ≥ nt} depend only on the endpoints of the ranges of the summands and the mean, or the mean and the variance of S. These results are then used to obtain analogous inequalities for certain sums of dependent random variables such as U statistics and the sum of a random sample without replacement from a finite population.

8,475 citations

Book
01 Jan 1991
TL;DR: A particular set of problems - all dealing with “good” colorings of an underlying set of points relative to a given family of sets - is explored.
Abstract: The use of randomness is now an accepted tool in Theoretical Computer Science but not everyone is aware of the underpinnings of this methodology in Combinatorics - particularly, in what is now called the probabilistic Method as developed primarily by Paul Erdoős over the past half century. Here I will explore a particular set of problems - all dealing with “good” colorings of an underlying set of points relative to a given family of sets. A central point will be the evolution of these problems from the purely existential proofs of Erdős to the algorithmic aspects of much interest to this audience.

6,324 citations


Cites result from "A Measure of Asymptotic Efficiency ..."

  • ...Most of the results may be found in, or immediately derived from, the seminal paper of Chernoff (1952) ....

    [...]

01 Jan 1961

4,164 citations

Book
01 Jan 1996
TL;DR: The Bayes Error and Vapnik-Chervonenkis theory are applied as guide for empirical classifier selection on the basis of explicit specification and explicit enforcement of the maximum likelihood principle.
Abstract: Preface * Introduction * The Bayes Error * Inequalities and alternatedistance measures * Linear discrimination * Nearest neighbor rules *Consistency * Slow rates of convergence Error estimation * The regularhistogram rule * Kernel rules Consistency of the k-nearest neighborrule * Vapnik-Chervonenkis theory * Combinatorial aspects of Vapnik-Chervonenkis theory * Lower bounds for empirical classifier selection* The maximum likelihood principle * Parametric classification *Generalized linear discrimination * Complexity regularization *Condensed and edited nearest neighbor rules * Tree classifiers * Data-dependent partitioning * Splitting the data * The resubstitutionestimate * Deleted estimates of the error probability * Automatickernel rules * Automatic nearest neighbor rules * Hypercubes anddiscrete spaces * Epsilon entropy and totally bounded sets * Uniformlaws of large numbers * Neural networks * Other error estimates *Feature extraction * Appendix * Notation * References * Index

3,406 citations


References
More filters