scispace - formally typeset

Journal ArticleDOI

A space-mapping interpolating surrogate algorithm for highly optimized EM-based design of microwave devices

08 Nov 2004-IEEE Transactions on Microwave Theory and Techniques (Institute of Electrical and Electronics Engineers)-Vol. 52, Iss: 11, pp 2593-2600

AbstractWe justify and elaborate in detail on a powerful new optimization algorithm that combines space mapping (SM) with a novel output SM. In a handful of fine-model evaluations, it delivers for the first time the accuracy expected from classical direct optimization using sequential linear programming. Our new method employs a space-mapping-based interpolating surrogate (SMIS) framework that aims at locally matching the surrogate with the fine model. Accuracy and convergence properties are demonstrated using a seven-section capacitively loaded impedance transformer. In comparing our algorithm with major minimax optimization algorithms, the SMIS algorithm yields the same minimax solution within an error of 10/sup -15/ as the Hald-Madsen algorithm. A highly optimized six-section H-plane waveguide filter design emerges after only four HFSS electromagnetic simulations, excluding necessary Jacobian estimations, using our algorithm with sparse frequency sweeps.

Topics: Filter design (53%), Space mapping (52%), Linear programming (52%), Minimax (50%)

Summary (2 min read)

Introduction

  • The SMIS is required to match both the responses and derivatives of the fine model within a local region of interest.
  • An algorithm based on it is outlined in Section V. Convergence is compared with two classical minimax algorithms, and a hybrid aggressive space-mapping (HASM) surrogate-based optimization algorithm using a seven-section capacitively loaded impedance transformer.

III. OSM

  • OSM addresses residual misalignment between the optimal coarse-model response and the true fine-model optimum response .
  • The results of Bakr et al. [4] indicate that “input” SM-based surrogates are good approximations to the fine model over a large region, which makes them useful in the early stages of an optimization process.
  • Fig. 2 depicts model effectiveness plots for the two-section capacitively loaded impedance transformer corresponding to Fig.
  • The dark grid shows the deviation of the fine model from its classical Taylor approximation as in Fig.

A. Surrogate

  • The SM-based interpolating surrogate is defined as a transformation of a coarse model through input and output mappings at each sampled response.
  • Using the function with individually adjusted coarse responses, defined as , where , the surrogate can be expressed as a composed mapping .
  • The constants are determined in such a way that the alignment (5) holds and the requirements in (6) are satisfied as well as possible (in some sense to be specified).
  • The alignment (5) is satisfied by choosing and appropriately.
  • In summary, the surrogate used in the th iteration is given by (9) In each iteration, the surrogate is optimized to find the next iterate by solving (10).

B. Surface Fitting Approach for Parameter Extraction (PE)

  • The authors employ a surface fitting approach for PE, which involves the minimization of residuals between the surrogate and fine models, and extracting the parameters , and .
  • Since (5) is automatically satisfied by using (7), the aim is to ensure the matching (6).
  • The residual (11) is used during the PE optimization process (12) which extracts the mapping parameters for the th response, and for iteration .
  • Hence, the authors have the complete set of mapping parameters after PE optimizations.

V. PROPOSED SMIS ALGORITHM

  • The proposed algorithm begins with the coarse model as the initial surrogate.
  • The algorithm incorporates explicit SM [1] and OSM [5] to speed up the convergence to the optimal solution.
  • TABLE I FINE MODEL CAPACITANCES, AND THE CHARACTERISTIC IMPEDANCES FOR THE SEVEN-SECTION CAPACITIVELY LOADED IMPEDANCE TRANSFORMER.
  • Step 5) Terminate if the stopping criteria are satisfied.
  • Step 6) Update the input and output mapping parameters through PE by solving (12).

A. Seven-Section Capacitively Loaded Impedance Transformer

  • The authors consider the benchmark synthetic example of a seven-section capacitively loaded impedance transformer [4].
  • Design parameters are normalized lengths with respect to the quarter-wave length at the center frequency of 4.35 GHz.
  • The fine-model response at the optimal coarse-model solution is shown in Fig.
  • In these figures, the authors show the HASM surrogate exploiting exact gradients.
  • Using the adjoint technique, the SMIS algorithm was able to obtain the same optimum solution as the Hald–Madsen algorithm within an error of 10 after only five iterations.

B. Six-Section -Plane Waveguide Filter

  • The physical structure of the six-section -plane waveguide filter is shown in Fig. 10(a) [7].
  • The authors simulate the fine model using Agilent High Frequency Structure Simulator (HFSS).
  • The design parameters are the lengths and widths, namely, 2Agilent HFSS, ver.

VII. CONCLUSION

  • The authors have presented a powerful algorithm based on a novel SMIS framework that delivers the solution accuracy expected from direct gradient-based optimization using SLP, yet converges in a handful of iterations.
  • It aims at matching a surrogate (mapped coarse model) with the fine model within a local region of interest by introducing more degrees of freedom into the SM.
  • Convergence is demonstrated through a seven-section capacitively loaded impedance transformer.
  • The authors compare the SMIS algorithm with major direct minimax optimization algorithms.
  • A highly optimized -plane filter design emerges after only four EM simulations (three iterations), excluding necessary Jacobian estimations, using the new algorithm with sparse frequency sweeps.

Did you find this useful? Give us your feedback

...read more

Content maybe subject to copyright    Report

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 11, NOVEMBER 2004 2593
A Space-Mapping Interpolating Surrogate Algorithm
for Highly Optimized EM-Based Design of
Microwave Devices
John W. Bandler, Fellow, IEEE, Daniel M. Hailu, Student Member, IEEE, Kaj Madsen, and Frank Pedersen
Abstract—We justify and elaborate in detail on a powerful
new optimization algorithm that combines space mapping (SM)
with a novel output SM. In a handful of fine-model evaluations,
it delivers for the first time the accuracy expected from classical
direct optimization using sequential linear programming. Our new
method employs a space-mapping-based interpolating surrogate
(SMIS) framework that aims at locally matching the surrogate
with the fine model. Accuracy and convergence properties are
demonstrated using a seven-section capacitively loaded impedance
transformer. In comparing our algorithm with major minimax
optimization algorithms, the SMIS algorithm yields the same
minimax solution within an error of 10
15
as the Hald–Madsen
algorithm. A highly optimized six-section
-plane waveguide
filter design emerges after only four HFSS electromagnetic sim-
ulations, excluding necessary Jacobian estimations, using our
algorithm with sparse frequency sweeps.
Index Terms—Computer-aided design (CAD) algorithms,
electromagnetics, filter design, interpolating surrogate, microwave
modeling, optimization, output space mapping (OSM), space
mapping (SM), surrogate modeling.
I. INTRODUCTION
E
LECTROMAGNETIC (EM) simulators, long used by
engineers for design verification, need to be exploited in the
optimization process. However, the higher the fidelity (accuracy)
of the EM simulations, the more expensive direct optimization
becomes. For complex problems, EM direct optimization may
be prohibitive. Space mapping (SM) [1] aims to combine the
speed and maturity of circuit simulators with the accuracy
of EM solvers. The SM concept exploits “coarse” models
(usually computationally fast circuit-based models) to construct
a surrogate that is faster than the “fine” models (typically CPU-
intensive full-wave EM simulations) and at least as accurate
as the underlying “coarse” model [1]–[4]. The surrogate is
Manuscript received April 29, 2004; revised July 8, 2004. This work was
supported in part by the Natural Sciences and Engineering Research Council
of Canada under Grant OGP0007239 and Grant STPGP 269760, through the
Micronet Network of Centres of Excellence and Bandler Corporation.
J. W. Bandler is with the Simulation Optimization Systems Research
Laboratory, Department of Electrical and Computer Engineering, McMaster
University, Hamilton, ON, Canada L8S 4K1 and also with Bandler Corporation,
Dundas, ON, Canada L9H 5E7 (e-mail: bandler@mcmaster.ca).
D. M. Hailu is with the Simulation Optimization Systems Research
Laboratory, Department of Electrical and Computer Engineering, McMaster
University, Hamilton, ON, Canada L8S 4K1.
K. Madsen and F. Pedersen are with the Department of Informatics and
Mathematical Modelling, Technical University of Denmark, DK-2800, Lyngby,
Denmark.
Digital Object Identifier 10.1109/TMTT.2004.837197
iteratively updated by the SM approach to better approximate
the corresponding fine model.
From the mathematical motivation of SM [4], it was found
that SM-based surrogate models provide a good approximation
over a large region, whereas the first-order Taylor model is better
close to the optimal fine-model solution. Based on this finding
and an explanation of residual misalignment, Bandler
et al..
[5] proposed the novel output space mapping (OSM) to further
correct residual misalignment close to the optimal fine-model
solution. OSM reduces the number of computationally expen-
sive fine-model evaluations, while improving accuracy of the
SM-based surrogate.
This paper elaborates on a new SM algorithm. Highly accu-
rate space-mapping interpolating surrogate (SMIS) models are
built for use in gradient-based optimization [6]. The SMIS is re-
quired to match both the responses and derivatives of the fine
model within a local region of interest. It employs an output
mapping to achieve this.
The SMIS framework is formulated in Section IV. An
algorithm based on it is outlined in Section V. Convergence
is compared with two classical minimax algorithms, and a
hybrid aggressive space-mapping (HASM) surrogate-based
optimization algorithm using a seven-section capacitively
loaded impedance transformer. Finally, the SMIS algorithm is
implemented on a six-section
-plane waveguide filter [7].
II. D
ESIGN PROBLEM
A. Design Problem
The original design problem is
(1)
Here,
is the fine-model response vector, e.g.,
at selected frequency points is the
number of response sample points, and the fine-model point is
denoted
, where is the number of design parameters.
is a suitable objective function, and is
the optimal design.
III. OSM
OSM addresses residual misalignment between the optimal
coarse-model response and the true fine-model optimum re-
sponse
. In the original SM [1], an exact match between
0018-9480/04$20.00 © 2004 IEEE

2594 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 11, NOVEMBER 2004
Fig. 1. Error plots for a two-section capacitively loaded impedance
transformer [4] exhibiting the quasi-global effectiveness of SM (light grid)
versus a classical Taylor approximation (dark grid). See text.
the ne model and mapped coarse model is unlikely. For ex-
ample, a coarse model such as
will never match the
ne model
around its minimum with any mapping
.Anoutput or response mapping can
overcome this deciency by introducing a transformation of the
coarse-model response based on a Taylor approximation [8].
The results of Bakr et al. [4] indicate that input SM-based
surrogates are good approximations to the ne model over a
large region, which makes them useful in the early stages of an
optimization process. The residual misalignment between the
corresponding mapped coarse model(s) and the ne model ren-
ders an exact match between them unlikely. Consequently, con-
vergence to
should not be expected.
Fig. 1 depicts model effectiveness plots [4] for a two-sec-
tion capacitively loaded impedance transformer at the nal it-
erate
, approximately . Centered at ,
the light grid shows
. This
represents the deviation of the mapped coarse model (using the
Taylor approximation
to the mapping, i.e., a
linearized mapping) from the ne model. The dark grid shows
. This is the deviation of the ne
model from its classical Taylor approximation
.
The gradient of the two-section capacitively loaded impedance
transformer, used in the Taylor approximation, was obtained an-
alytically using the adjoint network method [9]. The light grid
surface passing over the dark grid surface near the center of
Fig. 1 veries that the Taylor approximation is most accurate
close to
, whereas the mapped coarse model is best over a
larger region. The reason that the Taylor approximation is best
in the vicinity of
is that the Taylor approximation inter-
polates at the development point, whereas the mapped coarse
model does not.
Based on the above nding, Bakr et al. [10] use a surrogate
that is a convex combination of a mapped coarse model and a
rst-order Taylor approximation of the ne model. Madsen and
Søndergaard [11] prove convergence of such HASM algorithms.
Fig. 2. Error plots for a two-section capacitively loaded impedance
transformer [4] exhibiting the quasi-global effectiveness of SM-based
interpolating surrogate, which exploits OSM (light grid) versus a classical
Taylor approximation (dark grid). See text.
In this paper, we introduce a novel method to ensure con-
vergence of the SM technique. OSM is incorporated into SMIS
to ensure that we obtain the same solution as classical direct
gradient-based optimization. Fig. 2 depicts model effectiveness
plots for the two-section capacitively loaded impedance trans-
former corresponding to Fig. 1. Centered at
, the light grid
shows
. This represents the de-
viation of the SMIS surrogate from the ne model. The dark
grid shows the deviation of the ne model from its classical
Taylor approximation as in Fig. 1. Thus, Fig. 2 demonstrates
that the SMIS surrogate, because of its interpolating properties,
performs better than the rst-order Taylor approximation even
close to
.
IV. SMIS F
RAMEWORK
A. Surrogate
The SM-based interpolating surrogate
is
dened as a transformation of a coarse model
through input and output mappings at each sampled re-
sponse. Fig. 3 illustrates the SMIS framework. Here,
, where ,
[1], [2] is an input mapping for the
th coarse response ,
and
[8] is an output mapping applied to the
coarse response. Using the function
with individually adjusted coarse responses, dened as
, where
, the surrogate can be expressed as
a composed mapping
.
We wish to consider individual mappings of each coarse re-
sponse
. These (nonlinear) mappings will be
approximated by a sequence of local linear mappings. The
th
linearized input mapping at the
th iteration is assumed to be of
the form
(2)

BANDLER et al.: SMIS ALGORITHM 2595
Fig. 3. Illustration of the SMIS concept. The aim is to calibrate the mapped
coarse model (the surrogate) to match the ne model using different input and
output mappings for each sampled response.
where the matrix and vector . The th output
mapping is dened as
(3)
where
are the th components of . is dened
as
, where is a constant vector. Dening
similarly, the th component of the surrogate becomes
(4)
We now discuss how to determine the constants
dening the linear mappings
and . Assume we have reached the th iterate in the
iterative search for a solution. At
, the surrogate must
agree with the ne response [12]
(5)
We also aim to align the surrogate with the ne-model re-
sponse at the previous points in the iteration, as well as aim to
have agreement between the Jacobians at the current point, i.e.,
(6)
where
and are the Jacobians of the surrogate
and ne model at
, respectively.
The constants
are determined
in such a way that the alignment (5) holds and the requirements
in (6) are satised as well as possible (in some sense to be spec-
ied). The alignment (5) is satised by choosing
and ap-
propriately. If we let
, then (5) only depends on the
choice of
.
Thus, the
th surrogate of response number is
and (7)
where
(8)
In the rst iteration, the mapping parameters
and are used, which
ensure that
.For , the parameter
is utilized, which ensures (5).
In summary, the surrogate used in the
th iteration is given by
(9)
In each iteration, the surrogate is optimized to nd the next it-
erate by solving
(10)
B. Surface Fitting Approach for Parameter Extraction (PE)
PE is a crucial step in any SM algorithm. In this paper,
we employ a surface tting approach for PE, which involves
the minimization of residuals between the surrogate and ne
models, and extracting the parameters , and
.
Assume
has been found. We now wish to nd the
th set of mapping parameters . Since
(5) is automatically satised by using (7), the aim is to ensure
the matching (6). Thus, for nding ,we
aim to minimize the following set of residuals in some sense [6]:
.
.
.
(11)
where
and are the th columns of and , respec-
tively. The residual (11) is used during the PE optimization
process
(12)
which extracts the mapping parameters for the
th response, and
for iteration
. Hence, we have the complete set of mapping
parameters after
PE optimizations.
V. P
ROPOSED SMIS ALGORITHM
Our proposed algorithm begins with the coarse model as the
initial surrogate. The algorithm incorporates explicit SM [1] and
OSM [5] to speed up the convergence to the optimal solution.
Step 1)
Select a coarse and ne model.
Step 2)
Set
, and initialize .

2596 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 11, NOVEMBER 2004
Fig. 4. Seven-section capacitively loaded impedance transformer: Fine
model.
Fig. 5. Seven-section capacitively loaded impedance transformer: Coarse
model.
TABLE I
F
INE MODEL
CAPACITANCES, AND THE
CHARACTERISTIC
IMPEDANCES FOR THE
SEVEN-SECTION
CAPACITIVELY
LOADED IMPEDANCE
TRANSFORMER
Step 3)
Optimize the surrogate (9) to nd the next iterate
by solving (10).
Step 4)
Evaluate
.
Step 5)
Terminate if the stopping criteria are satised.
Step 6)
Update the input and output mapping parameters
through PE
by solving (12).
Step 7)
Set
, and go to Step 3.
As stopping criteria for the algorithm in Step 5, the relative
change in the solution vector, or the relative change in the ob-
jective function, could be employed.
VI. E
XAMPLES
A. Seven-Section Capacitively Loaded
Impedance Transformer
We consider the benchmark synthetic example of a seven-sec-
tion capacitively loaded impedance transformer [4]. We apply
the proposed SMIS algorithm to that example. The objective
function is given by
. We consider a
coarse model as an ideal seven-section transmission line (TL),
where the “fine model is a capacitively loaded TL with capac-
itors
pF. The ne and coarse models are shown
in Figs. 4 and 5, respectively. Design parameters are normalized
lengths
with respect to the
quarter-wave length
at the center frequency of 4.35 GHz.
Design specications are
for 1 GHz GHz (13)
with 68 points per frequency sweep. The characteristic imped-
ances for the transformer are xed as shown in Table I. The
Fig. 6. Seven-section capacitively loaded impedance transformer: optimal
coarse-model response
(
--
)
, the optimal minimax ne-model response (),
and the ne-model response at the initial solution or at the optimal coarse-model
solution
(
)
.
TABLE II
O
PTIMIZABLE PARAMETER
VALUES OF THE SEVEN-SECTION
CAPACITIVELY
LOADED IMPEDANCE TRANSFORMER
Fig. 7. Seven-section capacitively loaded impedance transformer: optimal
coarse-model response
(
--
)
, the optimal minimax ne-model response (),
and the ne-model response at the SMIS algorithm solution obtained after ve
iterations (six ne-model evaluations)
(
)
.
Jacobians of both the coarse and ne models were obtained
analytically using the adjoint network method [9]. We solve

BANDLER et al.: SMIS ALGORITHM 2597
Fig. 8. (a) First 25 iterations of the difference between the ne-model
objective function
U
obtained using the SMIS algorithm
(
)
and the
ne-model objective function at the ne-model minimax solution
U
obtained
by the HaldMadsen algorithm
( )
, the HASM surrogate optimization
algorithm using exact gradients
(
r
)
, and the HASM surrogate optimization
algorithm using the Broyden update
(1)
. (b) The corresponding difference
between the designs.
the PE problem using the LevenbergMarquardt algorithm for
nonlinear least squares optimization available in the M
ATLAB
Optimization Toolbox.
1
Optimizing the ne model directly using the gradient-based
minimax method of Madsen [13], and Hald and Madsen [14]
conrms that the problem has numerous local solutions. Starting
from the optimal coarse-model solution (the initial solution for
the SMIS method), the HaldMadsen minimax algorithm needs
13 iterations, or 13 ne-model evaluations, to converge to the
ne-model minimax solution. Note that both the direct opti-
mization method of Hald and Madsen and the SMIS approach
employ exact gradients.
The ne-model response at the optimal coarse-model solu-
tion is shown in Fig. 6. Table II shows the lengths for solutions
obtained using the SMIS algorithm and the ne-model direct
minimax optimization solution [13], [14]. Our SMIS algorithm
1
MATLAB, ver. 6.1, MathWorks Inc., Natick, MA, 2001.
Fig. 9. (a) Difference between the ne-model objective function
U
obtained
using the SMIS algorithm
(
)
and the ne-model objective function at the
ne-model minimax solution
U
obtained by the HaldMadsen algorithm
(
)
,
the HASM surrogate optimization algorithm using exact gradients
(
r
)
, and
the HASM surrogate optimization algorithm using the Broyden update
(1)
.
(b) The corresponding difference between the designs.
took six ne-model evaluations or ve iterations to reach the
same accurate solution as the HaldMadsen direct minimax op-
timization algorithm.
Fig. 7 shows the ne-model response at the SMIS algorithm
solution. The difference between the minimax objective func-
tion at the optimal minimax ne-model response and the re-
sponse obtained using the SMIS algorithm is shown in Figs. 8
and 9.
Corresponding results reached by the HaldMadsen method
are shown in Figs. 8 and 9. In these gures, we show the
HASM surrogate exploiting exact gradients. The minimax
objective function and solution reached by the HASM surro-
gate optimization approach using the Broyden update [10] are
also shown. The four methods converged to the same highly
accurate solution.
The optimization methods used for solving (1) and a compar-
ison is shown in Table III. Using the adjoint technique, the SMIS
algorithm was able to obtain the same optimum solution as the
HaldMadsen algorithm within an error of 10
after only ve
iterations.

Citations
More filters

Journal ArticleDOI
TL;DR: A comprehensive approach to engineering design optimization exploiting space mapping (SM) using a new generalization of implicit SM to minimize the misalignment between the coarse and fine models of the optimized object over a region of interest.
Abstract: This paper presents a comprehensive approach to engineering design optimization exploiting space mapping (SM). The algorithms employ input SM and a new generalization of implicit SM to minimize the misalignment between the coarse and fine models of the optimized object over a region of interest. Output SM ensures the matching of responses and first-order derivatives between the mapped coarse model and the fine model at the current iteration point in the optimization process. We provide theoretical results that show the importance of the explicit use of sensitivity information to the convergence properties of our family of algorithms. Our algorithm is demonstrated on the optimization of a microstrip bandpass filter, a bandpass filter with double-coupled resonators, and a seven-section impedance transformer. We describe the novel user-oriented software package SMF that implements the new family of SM optimization algorithms

278 citations


Journal Article
Abstract: In this paper we show that space-mapping optimization can be understood in the framework of defect correction. Then, space-mapping algorithms can be seen as special cases of defect correction iteration. In order to analyze the properties of space mapping and the space-mapping function, we introduce the new concept of flexibility of the underlying models. The best space-mapping results are obtained for so-called equally flexible models. By introducing an affine operator as a left preconditioner, two models can be made equally flexible, at least in the neighborhood of a solution. This motivates an improved space-mapping (or manifold-mapping) algorithm. The left preconditioner complements traditional space mapping where only a right preconditioner is used. In the last section a few simple examples illustrate some of the phenomena analyzed in this paper.

168 citations


Journal IssueDOI
TL;DR: The expected improvement approach is demonstrated on two electromagnetic problems, namely, a microwave filter and a textile antenna, and it is shown that this approach can improve the quality of designs on these problems.
Abstract: The increasing use of expensive computer simulations in engineering places a serious computational burden on associated optimization problems. Surrogate-based optimization becomes standard practice in analyzing such expensive black-box problems. This article discusses several approaches that use surrogate models for optimization and highlights one sequential design approach in particular, namely, expected improvement. The expected improvement approach is demonstrated on two electromagnetic problems, namely, a microwave filter and a textile antenna. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2010.

122 citations


Journal ArticleDOI
04 Dec 2006
TL;DR: The accuracy and efficiency of the technique is illustrated through the design and statistical analysis of a classical synthetic problem and a microstrip notch filter with mitered bends.
Abstract: A computationally efficient method for highly accurate electromagnetics-based statistical analysis and yield estimation of RF and microwave circuits is described in this paper. The statistical analysis is realized around a space-mapped nominal solution. Our method consists of applying a constrained Broyden-based linear input space-mapping approach to design, followed by an output neural space-mapping modeling process in which not only the responses, but the design parameters and independent variable are used as inputs to the output neural network. The output neural network is trained using reduced sets of training and testing data generated around the space-mapped nominal solution. We illustrate the accuracy and efficiency of our technique through the design and statistical analysis of a classical synthetic problem and a microstrip notch filter with mitered bends

114 citations


Journal ArticleDOI
TL;DR: Methods of assessing the quality of coarse/surrogate models are provided, derived from convergence results for space mapping algorithms, to predict whether a given model might be successfully used in space mapping optimization, or to choose the proper type of space mapping which would be suitable to a given engineering design problem.
Abstract: One of the central issues in space mapping optimization is the quality of the underlying coarse models and surrogates. Whether a coarse model is sufficiently similar to the fine model may be critical to the performance of the space mapping optimization algorithm and a poor coarse model may result in lack of convergence. Although similarity requirements can be expressed with proper analytical conditions, it is difficult to verify such conditions beforehand for real-world engineering optimization problems. In this paper, we provide methods of assessing the quality of coarse/surrogate models. These methods can be used to predict whether a given model might be successfully used in space mapping optimization, to compare the quality of different coarse models, or to choose the proper type of space mapping which would be suitable to a given engineering design problem. Our quality estimation methods are derived from convergence results for space mapping algorithms. We provide illustrations and several practical application examples.

105 citations


References
More filters


Journal ArticleDOI
Jr. Ralph W. Wyndrum1
01 Jul 1965

2,262 citations


Journal ArticleDOI
TL;DR: For the first time, a mathematical motivation is presented and SM is placed into the context of classical optimization to achieve a satisfactory solution with a minimal number of computationally expensive "fine" model evaluations.
Abstract: We review the space-mapping (SM) technique and the SM-based surrogate (modeling) concept and their applications in engineering design optimization. For the first time, we present a mathematical motivation and place SM into the context of classical optimization. The aim of SM is to achieve a satisfactory solution with a minimal number of computationally expensive "fine" model evaluations. SM procedures iteratively update and optimize surrogates based on a fast physically based "coarse" model. Proposed approaches to SM-based optimization include the original algorithm, the Broyden-based aggressive SM algorithm, various trust-region approaches, neural SM, and implicit SM. Parameter extraction is an essential SM subproblem. It is used to align the surrogate (enhanced coarse model) with the fine model. Different approaches to enhance uniqueness are suggested, including the recent gradient parameter-extraction approach. Novel physical illustrations are presented, including the cheese-cutting and wedge-cutting problems. Significant practical applications are reviewed.

971 citations


Journal ArticleDOI
TL;DR: An analytically robust, globally convergent approach to managing the use of approximation models of varying fidelity in optimization, based on the trust region idea from nonlinear programming, which is shown to be provably convergent to a solution of the original high-fidelity problem.
Abstract: This paper presents an analytically robust, globally convergent approach to managing the use of approximation models of various fidelity in optimization. By robust global behavior we mean the mathematical assurance that the iterates produced by the optimization algorithm, started at an arbitrary initial iterate, will converge to a stationary point or local optimizer for the original problem. The approach we present is based on the trust region idea from nonlinear programming and is shown to be provably convergent to a solution of the original high-fidelity problem. The proposed method for managing approximations in engineering optimization suggests ways to decide when the fidelity, and thus the cost, of the approximations might be fruitfully increased or decreased in the course of the optimization iterations. The approach is quite general. We make no assumptions on the structure of the original problem, in particular, no assumptions of convexity and separability, and place only mild requirements on the approximations. The approximations used in the framework can be of any nature appropriate to an application; for instance, they can be represented by analyses, simulations, or simple algebraic models. This paper introduces the approach and outlines the convergence analysis.

623 citations


Journal ArticleDOI
John W. Bandler1, R.M. Biernacki1, S.H. Chen1, P.A. Grobelny1, R.H. Hemmers1 
Abstract: We offer space mapping (SM), a fundamental new theory to circuit optimization utilizing a parameter space transformation. This technique is demonstrated by the optimization of a microstrip structure for which a convenient analytical/empirical model is assumed to be unavailable. For illustration, we focus upon a three-section microstrip impedance transformer and a double folded stub microstrip filter and explore various design characteristics utilizing an electromagnetic (EM) field simulator. We propose two distinct EM models: coarse for fast computations, and the corresponding fine for a few more accurate and well-targeted simulations. The coarse model, useful when circuit-theoretic models are not readily available, permits rapid exploration of different starting points, solution robustness, local minima, parameter sensitivities, yield-driven design and other design characteristics within a practical time frame. The computationally intensive fine model is used to verify the space-mapped designs obtained exploiting the coarse model, as well as in the SM process itself. >

533 citations