scispace - formally typeset
Open AccessPosted Content

Adversarial examples in the physical world

TLDR
This paper showed that even in the physical world scenarios, machine learning systems are vulnerable to adversarial examples, and they demonstrate this by feeding adversarial images obtained from a cell-phone camera to an ImageNet Inception classifier and measuring the classification accuracy of the system.
Abstract
Most existing machine learning classifiers are highly vulnerable to adversarial examples. An adversarial example is a sample of input data which has been modified very slightly in a way that is intended to cause a machine learning classifier to misclassify it. In many cases, these modifications can be so subtle that a human observer does not even notice the modification at all, yet the classifier still makes a mistake. Adversarial examples pose security concerns because they could be used to perform an attack on machine learning systems, even if the adversary has no access to the underlying model. Up to now, all previous work have assumed a threat model in which the adversary can feed data directly into the machine learning classifier. This is not always the case for systems operating in the physical world, for example those which are using signals from cameras and other sensors as an input. This paper shows that even in such physical world scenarios, machine learning systems are vulnerable to adversarial examples. We demonstrate this by feeding adversarial images obtained from cell-phone camera to an ImageNet Inception classifier and measuring the classification accuracy of the system. We find that a large fraction of adversarial examples are classified incorrectly even when perceived through the camera.

read more

Citations
More filters
Proceedings ArticleDOI

Boosting Adversarial Attacks with Momentum

TL;DR: A broad class of momentum-based iterative algorithms to boost adversarial attacks by integrating the momentum term into the iterative process for attacks, which can stabilize update directions and escape from poor local maxima during the iterations, resulting in more transferable adversarial examples.
Posted Content

Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples

TL;DR: This work identifies obfuscated gradients, a kind of gradient masking, as a phenomenon that leads to a false sense of security in defenses against adversarial examples, and develops attack techniques to overcome this effect.
Proceedings ArticleDOI

Robust Physical-World Attacks on Deep Learning Visual Classification

TL;DR: This work proposes a general attack algorithm, Robust Physical Perturbations (RP2), to generate robust visual adversarial perturbations under different physical conditions and shows that adversarial examples generated using RP2 achieve high targeted misclassification rates against standard-architecture road sign classifiers in the physical world under various environmental conditions, including viewpoints.
Journal ArticleDOI

Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey

TL;DR: A comprehensive survey on adversarial attacks on deep learning in computer vision can be found in this paper, where the authors review the works that design adversarial attack, analyze the existence of such attacks and propose defenses against them.
Journal ArticleDOI

Adversarial Examples: Attacks and Defenses for Deep Learning

TL;DR: In this paper, the authors review recent findings on adversarial examples for DNNs, summarize the methods for generating adversarial samples, and propose a taxonomy of these methods.
References
More filters
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Proceedings Article

Neural Machine Translation by Jointly Learning to Align and Translate

TL;DR: It is conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and it is proposed to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly.
Posted Content

Rethinking the Inception Architecture for Computer Vision

TL;DR: This work is exploring ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization.
Proceedings Article

Intriguing properties of neural networks

TL;DR: It is found that there is no distinction between individual highlevel units and random linear combinations of high level units, according to various methods of unit analysis, and it is suggested that it is the space, rather than the individual units, that contains of the semantic information in the high layers of neural networks.
Posted Content

Explaining and Harnessing Adversarial Examples

TL;DR: The authors argue that the primary cause of neural networks' vulnerability to adversarial perturbation is their linear nature, which is supported by new quantitative results while giving the first explanation of the most intriguing fact about adversarial examples: their generalization across architectures and training sets.