scispace - formally typeset
Journal ArticleDOI

Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation

Reads0
Chats0
TLDR
This article presents the function revolve, which generates checkpointing schedules that are provably optimal with regard to a primary and a secondary criterion and is intended to be used as an explicit “controller” for running a time-dependent applications program.
Abstract
In its basic form, the reverse mode of computational differentiation yields the gradient of a scalar-valued function at a cost that is a small multiple of the computational work needed to evaluate the function itself. However, the corresponding memory requirement is proportional to the run-time of the evaluation program. Therefore, the practical applicability of the reverse mode in its original formulation is limited despite the availability of ever larger memory systems. This observation leads to the development of checkpointing schedules to reduce the storage requirements. This article presents the function revolve, which generates checkpointing schedules that are provably optimal with regard to a primary and a secondary criterion. This routine is intended to be used as an explicit “controller” for running a time-dependent applications program.

read more

Citations
More filters
Patent

Poynting vector minimal reflection boundary conditions

TL;DR: In this paper, the authors simulate a seismic waveform using a computer, wherein computations are performed on a computational grid representing a subsurface region, said computational grid using perfectly matched layer (PML) boundary conditions that use an energy dissipation operator to minimize non-physical wave reflections at grid boundaries.
Journal ArticleDOI

A parallel-in-time approach for accelerating direct-adjoint studies

TL;DR: In this article, a parallel-in-time algorithm is proposed to accelerate the direct-adjoint looping procedure for both linear and non-linear governing equations and exploit the linear, time-varying nature of the adjoint equations.
Posted Content

Backpropagation for long sequences: beyond memory constraints with constant overheads.

TL;DR: This work presents a library that uses asynchronous storing and prefetching to move data to and from slow and cheap stor- age, and shows in experiments that by exploiting asyncronous data transfer, the strategy is always at least as fast, and usually faster than the previously studied "optimal" strategies.
Journal ArticleDOI

Lossy compression techniques supporting unsteady adjoint on 2D/3D unstructured grids

TL;DR: In this paper, lossy compression techniques are proposed for aerodynamic shape optimization problems with unsteady fluid flows, which are implemented within OpenFOAM, which is used to solve the flow and adjoint equations and conduct the optimization.
References
More filters
Book

Numerical methods for conservation laws

TL;DR: In this paper, the authors describe the derivation of conservation laws and apply them to linear systems, including the linear advection equation, the Euler equation, and the Riemann problem.
Book

Optimal Control of Systems Governed by Partial Differential Equations

TL;DR: In this paper, the authors consider the problem of minimizing the sum of a differentiable and non-differentiable function in the context of a system governed by a Dirichlet problem.
Book

Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation

TL;DR: This second edition has been updated and expanded to cover recent developments in applications and theory, including an elegant NP completeness argument by Uwe Naumann and a brief introduction to scarcity, a generalization of sparsity.
Journal ArticleDOI

Upwind difference schemes for hyperbolic systems of conservation laws

TL;DR: In this article, a new upwind finite difference approximation to systems of nonlinear hyperbolic conservation laws has been derived. But the scheme has desirable properties for shock calculations, such as unique and sharp shocks.
Journal ArticleDOI

Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation

TL;DR: It is shown here that, by a recursive scheme related to the multilevel differentiation approach of Volin and Ostrovskii, the growth in both temporal and spatial complexity can be limited to a fixed multiple of log(T).
Related Papers (5)