scispace - formally typeset
Open AccessProceedings ArticleDOI

An extended set of Haar-like features for rapid object detection

Rainer Lienhart, +1 more
- Vol. 1, pp 900-903
TLDR
This paper introduces a novel set of rotated Haar-like features that significantly enrich the simple features of Viola et al. scheme based on a boosted cascade of simple feature classifiers.
Abstract
Recently Viola et al. [2001] have introduced a rapid object detection. scheme based on a boosted cascade of simple feature classifiers. In this paper we introduce a novel set of rotated Haar-like features. These novel features significantly enrich the simple features of Viola et al. and can also be calculated efficiently. With these new rotated features our sample face detector shows off on average a 10% lower false alarm rate at a given hit rate. We also present a novel post optimization procedure for a given boosted cascade improving on average the false alarm rate further by 12.5%.

read more

Content maybe subject to copyright    Report




Citations
More filters
Proceedings ArticleDOI

You Only Look Once: Unified, Real-Time Object Detection

TL;DR: Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background, and outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
Journal ArticleDOI

Tracking-Learning-Detection

TL;DR: A novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection, and develops a novel learning method (P-N learning) which estimates the errors by a pair of “experts”: P-expert estimates missed detections, and N-ex Expert estimates false alarms.
Journal ArticleDOI

Object Detection With Deep Learning: A Review

TL;DR: In this article, a review of deep learning-based object detection frameworks is provided, focusing on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further.
Journal ArticleDOI

Non-contact, automated cardiac pulse measurements using video imaging and blind source separation.

TL;DR: This is the first demonstration of a low-cost accurate video-based method for contact-free heart rate measurements that is automated, motion-tolerant and capable of performing concomitant measurements on more than one person at a time.
Proceedings ArticleDOI

A convolutional neural network cascade for face detection

TL;DR: This work proposes a cascade architecture built on convolutional neural networks (CNNs) with very powerful discriminative capability, while maintaining high performance, and introduces a CNN-based calibration stage after each of the detection stages in the cascade.
References
More filters
Proceedings ArticleDOI

Rapid object detection using a boosted cascade of simple features

TL;DR: A machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates and the introduction of a new image representation called the "integral image" which allows the features used by the detector to be computed very quickly.
Proceedings Article

Experiments with a new boosting algorithm

TL;DR: This paper describes experiments carried out to assess how well AdaBoost with and without pseudo-loss, performs on real learning problems and compared boosting to Breiman's "bagging" method when used to aggregate various classifiers.
Journal ArticleDOI

Neural network-based face detection

TL;DR: A neural network-based upright frontal face detection system that arbitrates between multiple networks to improve performance over a single network, and a straightforward procedure for aligning positive face examples for training.
Proceedings ArticleDOI

A general framework for object detection

TL;DR: A general trainable framework for object detection in static images of cluttered scenes based on a wavelet representation of an object class derived from a statistical analysis of the class instances and a motion-based extension to enhance the performance of the detection algorithm over video sequences is presented.