scispace - formally typeset
Journal ArticleDOI

An optimal graph theoretic approach to data clustering: theory and its application to image segmentation

TLDR
A novel graph theoretic approach for data clustering is presented and its application to the image segmentation problem is demonstrated, resulting in an optimal solution equivalent to that obtained by partitioning the complete equivalent tree and is able to handle very large graphs with several hundred thousand vertices.
Abstract
A novel graph theoretic approach for data clustering is presented and its application to the image segmentation problem is demonstrated. The data to be clustered are represented by an undirected adjacency graph G with arc capacities assigned to reflect the similarity between the linked vertices. Clustering is achieved by removing arcs of G to form mutually exclusive subgraphs such that the largest inter-subgraph maximum flow is minimized. For graphs of moderate size ( approximately 2000 vertices), the optimal solution is obtained through partitioning a flow and cut equivalent tree of G, which can be efficiently constructed using the Gomory-Hu algorithm (1961). However for larger graphs this approach is impractical. New theorems for subgraph condensation are derived and are then used to develop a fast algorithm which hierarchically constructs and partitions a partially equivalent tree of much reduced size. This algorithm results in an optimal solution equivalent to that obtained by partitioning the complete equivalent tree and is able to handle very large graphs with several hundred thousand vertices. The new clustering algorithm is applied to the image segmentation problem. The segmentation is achieved by effectively searching for closed contours of edge elements (equivalent to minimum cuts in G), which consist mostly of strong edges, while rejecting contours containing isolated strong edges. This method is able to accurately locate region boundaries and at the same time guarantees the formation of closed edge contours. >

read more

Citations
More filters
Journal ArticleDOI

Data clustering: a review

TL;DR: An overview of pattern clustering methods from a statistical pattern recognition perspective is presented, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners.
Journal ArticleDOI

Normalized cuts and image segmentation

TL;DR: This work treats image segmentation as a graph partitioning problem and proposes a novel global criterion, the normalized cut, for segmenting the graph, which measures both the total dissimilarity between the different groups as well as the total similarity within the groups.
Proceedings ArticleDOI

Normalized cuts and image segmentation

TL;DR: This work treats image segmentation as a graph partitioning problem and proposes a novel global criterion, the normalized cut, for segmenting the graph, which measures both the total dissimilarity between the different groups as well as the total similarity within the groups.
Journal ArticleDOI

Fast approximate energy minimization via graph cuts

TL;DR: This work presents two algorithms based on graph cuts that efficiently find a local minimum with respect to two types of large moves, namely expansion moves and swap moves that allow important cases of discontinuity preserving energies.
Journal ArticleDOI

Efficient Graph-Based Image Segmentation

TL;DR: An efficient segmentation algorithm is developed based on a predicate for measuring the evidence for a boundary between two regions using a graph-based representation of the image and it is shown that although this algorithm makes greedy decisions it produces segmentations that satisfy global properties.
References
More filters
Journal ArticleDOI

Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images

TL;DR: The analogy between images and statistical mechanics systems is made and the analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations, creating a highly parallel ``relaxation'' algorithm for MAP estimation.
Book

Pattern classification and scene analysis

TL;DR: In this article, a unified, comprehensive and up-to-date treatment of both statistical and descriptive methods for pattern recognition is provided, including Bayesian decision theory, supervised and unsupervised learning, nonparametric techniques, discriminant analysis, clustering, preprosessing of pictorial data, spatial filtering, shape description techniques, perspective transformations, projective invariants, linguistic procedures, and artificial intelligence techniques for scene analysis.
Related Papers (5)