scispace - formally typeset
Open AccessJournal ArticleDOI

Anode Improvement in Rechargeable Lithium-Sulfur Batteries.

Reads0
Chats0
TLDR
A comprehensive review of various strategies is presented for enhancing the stability of the anode of lithium sulfur batteries, including inserting an interlayer, modifying the separator and electrolytes, employing artificial protection layers, and alternative anodes to replace the Li metal anode.
Abstract
Owing to their theoretical energy density of 2600 Wh kg-1 , lithium-sulfur batteries represent a promising future energy storage device to power electric vehicles. However, the practical applications of lithium-sulfur batteries suffer from poor cycle life and low Coulombic efficiency, which is attributed, in part, to the polysulfide shuttle and Li dendrite formation. Suppressing Li dendrite growth, blocking the unfavorable reaction between soluble polysulfides and Li, and improving the safety of Li-S batteries have become very important for the development of high-performance lithium sulfur batteries. A comprehensive review of various strategies is presented for enhancing the stability of the anode of lithium sulfur batteries, including inserting an interlayer, modifying the separator and electrolytes, employing artificial protection layers, and alternative anodes to replace the Li metal anode.

read more

Citations
More filters
Journal ArticleDOI

Current Status and Future Prospects of Metal–Sulfur Batteries

TL;DR: The current state of the research indicates that lithium-sulfur cells are now at the point of transitioning from laboratory-scale devices to a more practical energy-storage application, and over 450 research articles are summarized to analyze the research progress and explore the electrochemical characteristics, cell-assembly parameters, cell -testing conditions, and materials design.
Journal ArticleDOI

Combining theory and experiment in lithium–sulfur batteries: Current progress and future perspectives

TL;DR: In this paper, the typical applications of computational chemistry in Li-S battery studies, correlating to characterization techniques, such as X-ray diffraction, infra-red & Raman spectra, X -ray absorption spectroscopy, binding energy, and nuclear magnetic resonance, are reviewed.
Journal ArticleDOI

Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes

TL;DR: In this article, the authors introduce general strategies to address the problems of Li metal anodes and the special issues for the cathodes in Li-S and Li-O2 batteries respectively.
References
More filters
Journal ArticleDOI

Li-O2 and Li-S batteries with high energy storage.

TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Journal ArticleDOI

A lithium superionic conductor

TL;DR: A lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure that exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature, which represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes.
Journal ArticleDOI

Lithium–Sulfur Batteries: Electrochemistry, Materials, and Prospects

TL;DR: Constructing S molecules confined in the conductive microporous carbon materials to improve the cyclability of Li-S batteries serves as a prospective strategy for the industry in the future.
Journal ArticleDOI

Challenges and prospects of lithium-sulfur batteries.

TL;DR: The development of novel composite cathode materials including sulfur-carbon and sulfur-polymer composites are described, describing the design principles, structure and properties, and electrochemical performances of these new materials.
Related Papers (5)