scispace - formally typeset
Journal ArticleDOI

Artificial neural networks in renewable energy systems applications: a review

Reads0
Chats0
TLDR
In this article, the authors present various applications of neural networks mainly in renewable energy problems in a thematic rather than a chronological or any other order, which clearly suggest that artificial neural networks can be used for modelling in other fields of renewable energy production and use.
Abstract
Artificial neural networks are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with non-linear problems and, once trained, can perform prediction and generalisation at high speed. They have been used in diverse applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimisation, signal processing and social/psychological sciences. They are particularly useful in system modelling such as in implementing complex mappings and system identification. This paper presents various applications of neural networks mainly in renewable energy problems in a thematic rather than a chronological or any other order. Artificial neural networks have been used by the author in the field of solar energy; for modelling and design of a solar steam generating plant, for the estimation of a parabolic trough collector intercept factor and local concentration ratio and for the modelling and performance prediction of solar water heating systems. They have also been used for the estimation of heating loads of buildings, for the prediction of air flow in a naturally ventilated test room and for the prediction of the energy consumption of a passive solar building. In all those models a multiple hidden layer architecture has been used. Errors reported in these models are well within acceptable limits, which clearly suggest that artificial neural networks can be used for modelling in other fields of renewable energy production and use. The work of other researchers in the field of renewable energy and other energy systems is also reported. This includes the use of artificial neural networks in solar radiation and wind speed prediction, photovoltaic systems, building services systems and load forecasting and prediction.

read more

Citations
More filters
Journal ArticleDOI

Air Temperature Forecasting Using Machine Learning Techniques: A Review

TL;DR: This survey shows that Machine Learning techniques can help to accurately predict temperatures based on a set of input features, which can include the previous values of temperature, relative humidity, solar radiation, rain and wind speed measurements, among others.
Journal ArticleDOI

Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography

TL;DR: In this paper, two feed forward neural network architectures are examined for their ability to estimate the hourly wind speed in a coastal environment which is characterized by complex topography Additionally, the spatial average, the nearest and natural neighbor along with the inverse distance and square distance weighted average interpolation methods are employed and the results are compared for the area of study
Journal ArticleDOI

Performance prediction and analysis of a PEM fuel cell operating on pure oxygen using data-driven models: A comparison of artificial neural network and support vector machine

TL;DR: The ANN model was found to show excellent performance and outperform the SVM model in predicting the polarization curves of the stack under various operating conditions, with the root mean square errors of 1.8–2.9 mV and the mean absolute percentage errors of 0.27%.
Journal ArticleDOI

Modeling of Pyrolysis and Gasification of Biomass in Fluidized Beds: A Review

TL;DR: In this paper, the current reaction kinetics and its application in modeling pyrolysis and gasification of biomass in fluidized beds are analyzed and a review identifies the knowledge gaps and relevance of different modeling approaches to design and operation of gasifier plants.
References
More filters
Book

Neural Networks: A Comprehensive Foundation

Simon Haykin
TL;DR: Thorough, well-organized, and completely up to date, this book examines all the important aspects of this emerging technology, including the learning process, back-propagation learning, radial-basis function networks, self-organizing systems, modular networks, temporal processing and neurodynamics, and VLSI implementation of neural networks.
Book ChapterDOI

Learning internal representations by error propagation

TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Book

Learning internal representations by error propagation

TL;DR: In this paper, the problem of the generalized delta rule is discussed and the Generalized Delta Rule is applied to the simulation results of simulation results in terms of the generalized delta rule.
Related Papers (5)