scispace - formally typeset
Journal ArticleDOI

Basalt weathering laws and the impact of basalt weathering on the global carbon cycle

TLDR
In this paper, the chemical weathering of basalts and the flux of carbon transferred from the atmosphere to the ocean during this major process at the surface of the Earth were investigated.
About
This article is published in Chemical Geology.The article was published on 2003-12-30. It has received 762 citations till now. The article focuses on the topics: Soil production function & Weathering.

read more

Citations
More filters
Journal ArticleDOI

Paleogeographic forcing of the strontium isotopic cycle in the Neoproterozoic

TL;DR: In this paper, a coupled deep time climate-carbon numerical model was used to explore the complex role of tectonics and climate on the distinct evolution in seawater 87Sr/86Sr.
Journal ArticleDOI

Where is basalt in river sediments, and why does it matter?

TL;DR: In this article, trace element data as well as Nd, Hf and Pb isotopic compositions of sediments sampled at different water depths in the Ganges, Yamuna and Chambal Rivers draining the Deccan Traps basalts and the crystalline and sedimentary rocks from the Himalayan mountain range and the northern Indian shield are reported.
Journal ArticleDOI

Role of upper-most crustal composition in the evolution of the Precambrian ocean-atmosphere system

TL;DR: In this paper, the authors provide a new set of data on trace element concentrations, including the rare earth elements (REE), in the matrix of 52 marine black shale formations spread globally through the Archean and Proterozoic.
Journal ArticleDOI

The effect of rock composition on cyanobacterial weathering of crystalline basalt and rhyolite.

TL;DR: It is shown that at conditions where weathering is favoured, biota can enhance the difference between low and high Si-rock weathering and likely have done since they evolved on the early Earth.
Journal ArticleDOI

CO2 geological storage in olivine rich basaltic aquifers: New insights from reactive-percolation experiments

TL;DR: In this paper, the impact of fluid flow on the reactivity of porous (ultra-)mafic rocks was realized during which CO2-enriched water was injected at two different injection rates (Q = 0.1 and 1 mL h−1) through sintered analogues of olivine-accumulation zones in basaltic flows at temperature and fluid composition conditions (T = 180 °C; NaHCO3 buffered solution).
References
More filters
Journal ArticleDOI

Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers

TL;DR: In this article, newly compiled data on the 60 largest rivers of the world are used to calculate the contribution of main lithologies, rain and atmosphere to river dissolved loads, and the relationship between the chemical weathering rates of silicates and the possible controlling parameters are explored.
Journal ArticleDOI

The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years

TL;DR: In this article, a computer model has been constructed that considers the effects on the CO/sub 2/ level of the atmosphere, and the Ca, Mg, and HCO/sub 3/ levels of the ocean, of the following processes: weathering on the continents of calcite, dolomite, and calcium-and-magnesium-containing silicates; biogenic precipitation and removal of CaCO 3/from the ocean; removal of Mg from the ocean via volcanic-seawater reaction; and the metamorphic-magmatic decarbon
Journal ArticleDOI

Tectonic forcing of late Cenozoic climate

TL;DR: In particular, tectonically driven increases in chemical weathering may have resulted in a decrease of atmospheric C02 concentration over the past 40 Myr as discussed by the authors. But this was not shown to be the case for the uplift of the Tibetan plateau and positive feedbacks initiated by this event.
Journal ArticleDOI

Geocarb III: A Revised Model of Atmospheric CO2 over Phanerozoic Time

TL;DR: In this article, the GEOCARB model has been updated with an emphasis on factors affecting CO2 uptake by continental weathering, including the role of plants in chemical weathering and the application of GCMs to study the long-term carbon cycle.
Journal ArticleDOI

A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature

TL;DR: In this article, it is suggested that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism, in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, which in turn depends on the carbon dioxide partial pressure through the greenhouse effect.
Related Papers (5)