scispace - formally typeset
Journal ArticleDOI

Tectonic forcing of late Cenozoic climate

TLDR
In particular, tectonically driven increases in chemical weathering may have resulted in a decrease of atmospheric C02 concentration over the past 40 Myr as discussed by the authors. But this was not shown to be the case for the uplift of the Tibetan plateau and positive feedbacks initiated by this event.
Abstract
Global cooling in the Cenozoic, which led to the growth of large continental ice sheets in both hemispheres, may have been caused by the uplift of the Tibetan plateau and the positive feedbacks initiated by this event. In particular, tectonically driven increases in chemical weathering may have resulted in a decrease of atmospheric C02 concentration over the past 40 Myr.

read more

Citations
More filters
Journal ArticleDOI

Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present

TL;DR: This work focuses primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records.
Journal ArticleDOI

Global vegetation change through the Miocene/Pliocene boundary

TL;DR: For example, this paper found that between 8 and 6 million years ago, there was a global increase in the biomass of plants using C4 photosynthesis as indicated by changes in the carbon isotope ratios of fossil tooth enamel in Asia, Africa, North America and South America.
Journal ArticleDOI

Dynamics of the stream‐power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs

TL;DR: In this article, the authors explore the stream power erosion model in an effort to elucidate its consequences in terms of large-scale topographic (fluvial) relief and its sensitivity to tectonic and climatic forcing.
Journal ArticleDOI

Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon

TL;DR: For example, Hou et al. as mentioned in this paper show that a small increase in the mean elevation of the Tibetan Plateau of 1000 m or more in a few million years is required by abrupt tectonic and environmental changes in Asia and the Indian Ocean.
References
More filters
Book

The geochemistry of natural waters

TL;DR: The Hydrologic Cycle and Chemical Background of Natural Waters as mentioned in this paper, the Carbonate System and pH Control 5 Clay Minerals and Ion Exchange 6 Stability Relationships and Silicate Equilibria 7 Kinetics 8 Weathering and Water Chemistry, I: Principles 9 Water Chemistry Chemistry, II: Examples 10 Acid Deposition and Surface Water Chemistry 11 Evaporation and Saline Waters 12 The Oceans 13 Redox Eilibria 14 Redox Conditions in Natural Waters 15 Trace Elements 16 Mathematical and Numerical Models 17 Isotopes Appendices
Book

Tracers in the Sea

Journal ArticleDOI

The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years

TL;DR: In this article, a computer model has been constructed that considers the effects on the CO/sub 2/ level of the atmosphere, and the Ca, Mg, and HCO/sub 3/ levels of the ocean, of the following processes: weathering on the continents of calcite, dolomite, and calcium-and-magnesium-containing silicates; biogenic precipitation and removal of CaCO 3/from the ocean; removal of Mg from the ocean via volcanic-seawater reaction; and the metamorphic-magmatic decarbon
Journal ArticleDOI

Tracers in the Sea

Michael L. Bender
- 01 Aug 1984 - 
Journal ArticleDOI

Vostok ice core provides 160,000-year record of atmospheric CO2

TL;DR: In this article, direct evidence of past atmospheric CO2 changes has been extended to the past 160,000 years from the Vostok ice core, showing an inherent phenomenon of change between glacial and interglacial periods.
Related Papers (5)