scispace - formally typeset
Journal ArticleDOI

Convolutional face finder: a neural architecture for fast and robust face detection

TLDR
It is shown that an efficient face detection system does not require any costly local preprocessing before classification of image areas, and provides very high detection rate with a particularly low level of false positives, demonstrated on difficult test sets, without requiring the use of multiple networks for handling difficult cases.
Abstract
In this paper, we present a novel face detection approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns, rotated up to /spl plusmn/20 degrees in image plane and turned up to /spl plusmn/60 degrees, in complex real world images. The proposed system automatically synthesizes simple problem-specific feature extractors from a training set of face and nonface patterns, without making any assumptions or using any hand-made design concerning the features to extract or the areas of the face pattern to analyze. The face detection procedure acts like a pipeline of simple convolution and subsampling modules that treat the raw input image as a whole. We therefore show that an efficient face detection system does not require any costly local preprocessing before classification of image areas. The proposed scheme provides very high detection rate with a particularly low level of false positives, demonstrated on difficult test sets, without requiring the use of multiple networks for handling difficult cases. We present extensive experimental results illustrating the efficiency of the proposed approach on difficult test sets and including an in-depth sensitivity analysis with respect to the degrees of variability of the face patterns.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Deep learning

TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Book

Deep Learning

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Journal ArticleDOI

Learning Hierarchical Features for Scene Labeling

TL;DR: A method that uses a multiscale convolutional network trained from raw pixels to extract dense feature vectors that encode regions of multiple sizes centered on each pixel, alleviates the need for engineered features, and produces a powerful representation that captures texture, shape, and contextual information.
Proceedings ArticleDOI

Convolutional networks and applications in vision

TL;DR: New unsupervised learning algorithms, and new non-linear stages that allow ConvNets to be trained with very few labeled samples are described, including one for visual object recognition and vision navigation for off-road mobile robots.
Journal ArticleDOI

A survey of the recent architectures of deep convolutional neural networks

TL;DR: Deep Convolutional Neural Networks (CNNs) as mentioned in this paper are a special type of Neural Networks, which has shown exemplary performance on several competitions related to Computer Vision and Image Processing.
References
More filters
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Proceedings ArticleDOI

Rapid object detection using a boosted cascade of simple features

TL;DR: A machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates and the introduction of a new image representation called the "integral image" which allows the features used by the detector to be computed very quickly.
Journal ArticleDOI

Robust Real-Time Face Detection

TL;DR: In this paper, a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates is described. But the detection performance is limited to 15 frames per second.
Journal ArticleDOI

Receptive fields, binocular interaction and functional architecture in the cat's visual cortex

TL;DR: This method is used to examine receptive fields of a more complex type and to make additional observations on binocular interaction and this approach is necessary in order to understand the behaviour of individual cells, but it fails to deal with the problem of the relationship of one cell to its neighbours.
Proceedings ArticleDOI

Robust real-time face detection

TL;DR: A new image representation called the “Integral Image” is introduced which allows the features used by the detector to be computed very quickly and a method for combining classifiers in a “cascade” which allows background regions of the image to be quickly discarded while spending more computation on promising face-like regions.
Related Papers (5)