scispace - formally typeset
Journal ArticleDOI

Copper-Catalyzed Aerobic Oxidative C ? H Functionalizations: Trends and Mechanistic Insights

TLDR
This work has reported several recently reported Cu-catalyzed C-H oxidation reactions that feature substrates that are electron-deficient or appear unlikely to undergo single-electron transfer to copper(II), and evidence has been obtained for the involvement of organocopper(III) intermediates in the reaction mechanism.
Abstract
The selective oxidation of C-H bonds and the use of O(2) as a stoichiometric oxidant represent two prominent challenges in organic chemistry. Copper(II) is a versatile oxidant, capable of promoting a wide range of oxidative coupling reactions initiated by single-electron transfer (SET) from electron-rich organic molecules. Many of these reactions can be rendered catalytic in Cu by employing molecular oxygen as a stoichiometric oxidant to regenerate the active copper(II) catalyst. Meanwhile, numerous other recently reported Cu-catalyzed C-H oxidation reactions feature substrates that are electron-deficient or appear unlikely to undergo single-electron transfer to copper(II). In some of these cases, evidence has been obtained for the involvement of organocopper(III) intermediates in the reaction mechanism. Organometallic C-H oxidation reactions of this type represent important new opportunities for the field of Cu-catalyzed aerobic oxidations.

read more

Citations
More filters
Journal ArticleDOI

Copper supported β-cyclodextrin functionalized PEGylated mesoporous silica nanoparticle -graphene oxide hybrid: An efficient and recyclable nano-catalyst for straightforward synthesis of 2-arylbenzimidazoles and 1,2,3-triazoles

TL;DR: In this paper, a PEG600 ended β-cyclodextrin functionalized PEGylated mesoporous silica nanoparticles-graphene oxide hybrid has been introduced as a heterogeneous support for immobilization of copper catalyst (denoted as Cu@βCD-PEG-mesoGO).
Journal ArticleDOI

Operando X-ray absorption and EPR evidence for a single electron redox process in copper catalysis

TL;DR: A single electron redox process between Cu(ii) and a sulfinic acid, and characterization of the formed Cu(i) are clearly shown using operando X-ray absorption and EPR evidence.
Journal ArticleDOI

Copper(II)-Catalyzed Oxidative Cross-Coupling of Anilines, Primary Alkyl Amines, and Sodium Azide Using TBHP: A Route to 2-Substituted Benzimidazoles

TL;DR: This one-pot multicomponent protocol involves a domino C-H functionalization, transimination, ortho-selective amination, and a cyclization sequence that can be extended to the coupling of benzyl alcohols with moderate yields.
Journal ArticleDOI

Copper(II)-Catalyzed Synthesis of Benzo[f]pyrido[1,2-a]indole-6,11-dione Derivatives via Naphthoquinone Difunctionalization Reaction

TL;DR: In an attempt to expand the reaction scope and to help clarify the reaction mechanism, 1,3-dicarbonyl compounds are used in place of acyl bromides to take part in this reaction, and the benzo[f]pyrido[1,2-a]indole-6,11-diones derivatives are obtained in excellent yields.
References
More filters
Journal ArticleDOI

Palladium-Catalyzed Ligand-Directed C−H Functionalization Reactions

TL;DR: This is the first comprehensive review encompassing the large body of work in this field over the past 5 years, and will focus specifically on ligand-directed C–H functionalization reactions catalyzed by palladium.
Journal ArticleDOI

Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality.

TL;DR: A review of palladium-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle can be found in this paper.
Journal ArticleDOI

Multicopper Oxidases and Oxygenases

TL;DR: Copper sites have historically been divided into three classes based on their spectroscopic features, which reflect the geometric and electronic structure of the active site: type 1 or blue copper, type 2 (T2) or normal copper, and type 3 (T3) or coupled binuclear copper centers.
Journal ArticleDOI

Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

TL;DR: This review focuses on Rh-catalyzed methods for C-H bond functionalization, which have seen widespread success over the course of the last decade and are discussed in detail in the accompanying articles in this special issue of Chemical Reviews.
Related Papers (5)