scispace - formally typeset
Journal ArticleDOI

Copper-Catalyzed Aerobic Oxidative C ? H Functionalizations: Trends and Mechanistic Insights

TLDR
This work has reported several recently reported Cu-catalyzed C-H oxidation reactions that feature substrates that are electron-deficient or appear unlikely to undergo single-electron transfer to copper(II), and evidence has been obtained for the involvement of organocopper(III) intermediates in the reaction mechanism.
Abstract
The selective oxidation of C-H bonds and the use of O(2) as a stoichiometric oxidant represent two prominent challenges in organic chemistry. Copper(II) is a versatile oxidant, capable of promoting a wide range of oxidative coupling reactions initiated by single-electron transfer (SET) from electron-rich organic molecules. Many of these reactions can be rendered catalytic in Cu by employing molecular oxygen as a stoichiometric oxidant to regenerate the active copper(II) catalyst. Meanwhile, numerous other recently reported Cu-catalyzed C-H oxidation reactions feature substrates that are electron-deficient or appear unlikely to undergo single-electron transfer to copper(II). In some of these cases, evidence has been obtained for the involvement of organocopper(III) intermediates in the reaction mechanism. Organometallic C-H oxidation reactions of this type represent important new opportunities for the field of Cu-catalyzed aerobic oxidations.

read more

Citations
More filters
Journal ArticleDOI

Copper-Catalyzed Site-Selective Intramolecular Amidation of Unactivated C(sp3) ? H Bonds

TL;DR: The intramolecular dehydrogenative amidation of aliphatic amides, directed by a bidentate ligand, was developed using a copper-catalyzed sp(3) C-H bond functionalization process that favors predominantly the C-h bonds of β-methyl groups over the unactivated methylene C- H bonds.
Journal ArticleDOI

From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

TL;DR: The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed and preliminary mechanism studies indicate that two novel pathways are mainly involved.
Journal ArticleDOI

Tunable Arylative Cyclization of 1,6-Enynes Triggered by Rhodium(III)-Catalyzed C–H Activation

TL;DR: Two tunable arylative cyclizations of cyclohexadienone-containing 1,6-enynes are reported via rhodium(III)-catalyzed C-H activation of O-substituted N-hydroxybenzamides, and the results extend the application realm of Cp*Rh(III) activation cascade reactions.
Journal ArticleDOI

Copper-mediated oxidative direct C–C (hetero)aromatic cross-coupling

TL;DR: Some new types of copper-mediated intermolecular oxidative direct C-C (hetero)aromatic cross-couplings are described, which can provide a unique dehydrogenative approach to C3-azolylbenzoheteroles from nonhalogenated and nonmetalated starting materials.
References
More filters
Journal ArticleDOI

Palladium-Catalyzed Ligand-Directed C−H Functionalization Reactions

TL;DR: This is the first comprehensive review encompassing the large body of work in this field over the past 5 years, and will focus specifically on ligand-directed C–H functionalization reactions catalyzed by palladium.
Journal ArticleDOI

Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality.

TL;DR: A review of palladium-catalyzed coupling of CH bonds with organometallic reagents through a PdII/Pd0 catalytic cycle can be found in this paper.
Journal ArticleDOI

Multicopper Oxidases and Oxygenases

TL;DR: Copper sites have historically been divided into three classes based on their spectroscopic features, which reflect the geometric and electronic structure of the active site: type 1 or blue copper, type 2 (T2) or normal copper, and type 3 (T3) or coupled binuclear copper centers.
Journal ArticleDOI

Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

TL;DR: This review focuses on Rh-catalyzed methods for C-H bond functionalization, which have seen widespread success over the course of the last decade and are discussed in detail in the accompanying articles in this special issue of Chemical Reviews.
Related Papers (5)