scispace - formally typeset
Journal ArticleDOI

Critical Role of Side-Chain Attachment Density on the Order and Device Performance of Polythiophenes

Reads0
Chats0
TLDR
In this paper, side chains of poly(alkylthiophenes copolymers can and do interdigitate substantially, whereas they do not in the most common form of the extensively studied, lower-than-optimal poly(alphabetic) copolymer, and side-chain interdigitation provides a mechanism for three-dimensional ordering.
Abstract
High performance, solution processable semiconductors are critical to the realization of low cost, large area electronics. We show that a signature molecular packing motifside-chain interdigitationcorrelates to high performance for a large and important class of organic semiconductors. The side chains of recently developed high performance copolymers of poly(alkylthiophenes) can and do interdigitate substantially, whereas they do not in the most common form of the extensively studied, lower performance poly(alkythiophenes). Side-chain interdigitation provides a mechanism for three-dimensional ordering; without it, poly(alkylthiophenes) are limited to small domains and poor performance. We propose the synthetic design rule that three-dimensional ordering is promoted by side-chain attachment densities sufficiently low to permit interdigitation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Synthesis of Conjugated Polymers for Organic Solar Cell Applications

TL;DR: Fluorene-Based Copolymers ContainingPhosphorescent Complexes and Carbazole-Based Conjugated Polymers R5.1.3.
Journal ArticleDOI

A general relationship between disorder, aggregation and charge transport in conjugated polymers

TL;DR: In this article, a unified model of how charge carriers travel in conjugated polymer films is proposed, and it is shown that in high-molecular-weight polymers, efficient charge transport is allowed due to a network of interconnected aggregates that are characterized by short-range order.
Journal ArticleDOI

Materials and applications for large area electronics: solution-based approaches.

TL;DR: This work focuses on Organic Electronics Materials, which consist of Organic Transistors, Polymer Semiconductors, and Poly(3,2-b)thiophenes, and investigates the role of bias stress in these materials.
Journal ArticleDOI

Quantitative determination of organic semiconductor microstructure from the molecular to device scale.

TL;DR: The authors would like to thank M. Chabinyc, H. Ade, B. Noriega, K. Vandewal, and D. Duong for fruitful discussions in the preparation of this review and the Center for Advanced Molecular Photovoltaics for funding.
References
More filters
Journal ArticleDOI

Electroluminescence in conjugated polymers

TL;DR: Research in the use of organic polymers as active semiconductors in light-emitting diodes has advanced rapidly, and prototype devices now meet realistic specifications for applications.
Journal ArticleDOI

Two-dimensional charge transport in self-organized, high-mobility conjugated polymers

TL;DR: In this article, the authors used thin-film, field effect transistor structures to probe the transport properties of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT.
Journal ArticleDOI

Integrated Optoelectronic Devices Based on Conjugated Polymers

TL;DR: An all-polymer semiconductor integrated device is demonstrated with a high-mobility conjugated polymer field-effect transistor driving a polymer light-emitting diode (LED) of similar size, which represents a step toward all- polymer optoelectronic integrated circuits such as active-matrix polymer LED displays.
Journal ArticleDOI

Organic solar cells: An overview

TL;DR: The current status of the field of organic solar cells and the important parameters to improve their performance are discussed in this paper. But, the two competitive production techniques used today are either wet solution processing or dry thermal evaporation of the organic constituents.
Journal ArticleDOI

Conjugated Polymer Photovoltaic Cells

TL;DR: In this paper, the authors showed that the photogenerated excitons are usually not split by the built-in electric field, which arises from differences in the electrode work functions.
Related Papers (5)