scispace - formally typeset
Open AccessProceedings Article

Deep Neural Networks as Gaussian Processes

TLDR
The exact equivalence between infinitely wide deep networks and GPs is derived and it is found that test performance increases as finite-width trained networks are made wider and more similar to a GP, and thus that GP predictions typically outperform those of finite- width networks.
Abstract
It has long been known that a single-layer fully-connected neural network with an i.i.d. prior over its parameters is equivalent to a Gaussian process (GP), in the limit of infinite network width. This correspondence enables exact Bayesian inference for infinite width neural networks on regression tasks by means of evaluating the corresponding GP. Recently, kernel functions which mimic multi-layer random neural networks have been developed, but only outside of a Bayesian framework. As such, previous work has not identified that these kernels can be used as covariance functions for GPs and allow fully Bayesian prediction with a deep neural network. In this work, we derive the exact equivalence between infinitely wide deep networks and GPs. We further develop a computationally efficient pipeline to compute the covariance function for these GPs. We then use the resulting GPs to perform Bayesian inference for wide deep neural networks on MNIST and CIFAR-10. We observe that trained neural network accuracy approaches that of the corresponding GP with increasing layer width, and that the GP uncertainty is strongly correlated with trained network prediction error. We further find that test performance increases as finite-width trained networks are made wider and more similar to a GP, and thus that GP predictions typically outperform those of finite-width networks. Finally we connect the performance of these GPs to the recent theory of signal propagation in random neural networks.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Early Stopping in Deep Networks: Double Descent and How to Eliminate it

TL;DR: Inspired by this theory, two standard convolutional networks are studied empirically and it is shown that eliminating epoch-wise double descent through adjusting stepsizes of different layers improves the early stopping performance significantly.
Posted Content

Random deep neural networks are biased towards simple functions

TL;DR: It is proved that the binary classifiers of bit strings generated by random wide deep neural networks are biased towards simple functions, and a precise characterization of the form of this bias towards simplicity is provided, paving the way to a rigorous proof of the generalization properties of deep learning algorithms in real-world scenarios.
Posted Content

Generalization bounds for deep learning

TL;DR: Desiderata for techniques that predict generalization errors for deep learning models in supervised learning are introduced, and a marginal-likelihood PAC-Bayesian bound is derived that fulfills desiderata 1-3 and 5.
Posted Content

Taylorized Training: Towards Better Approximation of Neural Network Training at Finite Width

TL;DR: Taylorized training can significantly close the performance gap between linearized and full training and is a principled extension of linearized training---a recently proposed theory for understanding the success of deep learning.
Posted Content

Bayesian Neural Network Priors Revisited

TL;DR: In this paper, the authors study summary statistics of neural network weights in different networks trained using SGD and find that fully connected networks (FCNNs) display heavy-tailed weight distributions, while convolutional neural network (CNN) weights display strong spatial correlations.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Book

Bayesian learning for neural networks

TL;DR: Bayesian Learning for Neural Networks shows that Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional neural network learning methods.
Journal ArticleDOI

A Unifying View of Sparse Approximate Gaussian Process Regression

TL;DR: A new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression, relies on expressing the effective prior which the methods are using, and highlights the relationship between existing methods.
Journal Article

In Defense of One-Vs-All Classification

TL;DR: It is argued that a simple "one-vs-all" scheme is as accurate as any other approach, assuming that the underlying binary classifiers are well-tuned regularized classifiers such as support vector machines.
Proceedings Article

Gaussian processes for Big data

TL;DR: In this article, the authors introduce stochastic variational inference for Gaussian process models, which enables the application of Gaussian Process (GP) models to data sets containing millions of data points.