scispace - formally typeset
Open AccessProceedings Article

Deep Neural Networks as Gaussian Processes

TLDR
The exact equivalence between infinitely wide deep networks and GPs is derived and it is found that test performance increases as finite-width trained networks are made wider and more similar to a GP, and thus that GP predictions typically outperform those of finite- width networks.
Abstract
It has long been known that a single-layer fully-connected neural network with an i.i.d. prior over its parameters is equivalent to a Gaussian process (GP), in the limit of infinite network width. This correspondence enables exact Bayesian inference for infinite width neural networks on regression tasks by means of evaluating the corresponding GP. Recently, kernel functions which mimic multi-layer random neural networks have been developed, but only outside of a Bayesian framework. As such, previous work has not identified that these kernels can be used as covariance functions for GPs and allow fully Bayesian prediction with a deep neural network. In this work, we derive the exact equivalence between infinitely wide deep networks and GPs. We further develop a computationally efficient pipeline to compute the covariance function for these GPs. We then use the resulting GPs to perform Bayesian inference for wide deep neural networks on MNIST and CIFAR-10. We observe that trained neural network accuracy approaches that of the corresponding GP with increasing layer width, and that the GP uncertainty is strongly correlated with trained network prediction error. We further find that test performance increases as finite-width trained networks are made wider and more similar to a GP, and thus that GP predictions typically outperform those of finite-width networks. Finally we connect the performance of these GPs to the recent theory of signal propagation in random neural networks.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Convex Geometry and Duality of Over-parameterized Neural Networks

TL;DR: A convex analytic framework for ReLU neural networks is developed which elucidates the inner workings of hidden neurons and their function space characteristics and establishes a connection to $\ell_0$-$\ell_1$ equivalence for neural networks analogous to the minimal cardinality solutions in compressed sensing.
Proceedings Article

When Do Neural Networks Outperform Kernel Methods

TL;DR: In this paper, the authors show that the curse of dimensionality becomes milder if the feature vectors display the same low-dimensional structure as the target function, and precisely characterize this tradeoff.
Posted Content

Disentangling Trainability and Generalization in Deep Learning

TL;DR: This paper discusses challenging issues in the context of wide neural networks at large depths and finds that there are large regions of hyperparameter space where networks can only memorize the training set in the sense they reach perfect training accuracy but completely fail to generalize outside the trainingSet.
Proceedings Article

Conservative Uncertainty Estimation By Fitting Prior Networks

TL;DR: Uncertainty estimates obtained from random priors can be adapted to any deep network architecture and trained using standard supervised learning pipelines, and outperform deep ensembles in practice.
Journal ArticleDOI

Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks.

TL;DR: This article investigated generalization error for kernel regression and showed that more data may impair generalization when noisy or not expressible by the kernel, leading to non-monotonic learning curves with possibly many peaks.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Book

Bayesian learning for neural networks

TL;DR: Bayesian Learning for Neural Networks shows that Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional neural network learning methods.
Journal ArticleDOI

A Unifying View of Sparse Approximate Gaussian Process Regression

TL;DR: A new unifying view, including all existing proper probabilistic sparse approximations for Gaussian process regression, relies on expressing the effective prior which the methods are using, and highlights the relationship between existing methods.
Journal Article

In Defense of One-Vs-All Classification

TL;DR: It is argued that a simple "one-vs-all" scheme is as accurate as any other approach, assuming that the underlying binary classifiers are well-tuned regularized classifiers such as support vector machines.
Proceedings Article

Gaussian processes for Big data

TL;DR: In this article, the authors introduce stochastic variational inference for Gaussian process models, which enables the application of Gaussian Process (GP) models to data sets containing millions of data points.