scispace - formally typeset
Journal ArticleDOI

Digital recording and numerical reconstruction of holograms

TLDR
The principles and major applications of digital recording and numerical reconstruction of holograms (digital holography) are described, which are applied to measure shape and surface deformation of opaque bodies and refractive index fields within transparent media.
Abstract
This article describes the principles and major applications of digital recording and numerical reconstruction of holograms (digital holography). Digital holography became feasible since charged coupled devices (CCDs) with suitable numbers and sizes of pixels and computers with sufficient speed became available. The Fresnel or Fourier holograms are recorded directly by the CCD and stored digitally. No film material involving wet-chemical or other processing is necessary. The reconstruction of the wavefield, which is done optically by illumination of a hologram, is performed by numerical methods. The numerical reconstruction process is based on the Fresnel–Kirchhoff integral, which describes the diffraction of the reconstructing wave at the micro-structure of the hologram. In the numerical reconstruction process not only the intensity, but also the phase distribution of the stored wavefield can be computed from the digital hologram. This offers new possibilities for a variety of applications. Digital holography is applied to measure shape and surface deformation of opaque bodies and refractive index fields within transparent media. Further applications are imaging and microscopy, where it is advantageous to refocus the area under investigation by numerical methods.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy.

TL;DR: A digital holographic microscope, in a transmission mode, especially dedicated to the quantitative visualization of phase objects such as living cells, is developed, based on an original numerical algorithm presented in detail elsewhere.
Journal ArticleDOI

Principles and techniques of digital holographic microscopy

TL;DR: Digital holography is an emerging field of new paradigm in general imaging applications as discussed by the authors, and a review of a subset of the research and development activities in digital holographic microscopy techniques and applications is presented.
Journal ArticleDOI

Digital in-line holographic microscopy.

TL;DR: The state of the art of digital in-line holographic microscopy with numerical reconstruction is reviewed and some technical issues, such as lateral and depth resolution, depth of field, twin image, four-dimensional tracking, and reconstruction algorithm are discussed.
Journal ArticleDOI

Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy

TL;DR: Unique features of lens-free computational imaging tools are discussed and some of their emerging results for wide-field on-chip microscopy, such as the achievement of a numerical aperture of ∼0.8–0.9 across a field of view (FOV) of more than 20 mm2, which corresponds to an image with more than 1.5 gigapixels.
Journal ArticleDOI

Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics

TL;DR: The benefits and drawbacks of different particle-based imaging methods, such as confocal scanning microscopy, holography, stereoscopic and tomographic imaging or approaches based on defocused particle images or optical aberrations, and the importance of image preprocessing will be discussed in detail.
References
More filters
Journal ArticleDOI

A new microscopic principle.

Dennis Gabor
- 01 May 1948 - 
TL;DR: An improvement of the resolution by one decimal wotild require a correction of the objective to four decimals, a practically hopeless task.
Journal ArticleDOI

Phase-shifting digital holography

TL;DR: A new method is proposed in which the distribution of complex amplitude at a plane is measured by phase-shifting interferometry and then Fresnel transformed by a digital computer, which can reconstruct an arbitrary cross section of a three-dimensional object with higher image quality and a wider viewing angle than from conventional digital holography using an off-axis configuration.
Book

Holographic Interferometry

Journal ArticleDOI

Reconstructed Wavefronts and Communication Theory

TL;DR: In this paper, a two-step imaging process is described from a communication-theory viewpoint, which consists of three well-known operations: a modulation, a frequency dispersion, and a square-law detection.
Journal ArticleDOI

Direct recording of holograms by a CCD target and numerical reconstruction.

TL;DR: The principle of recording holograms directly on a CCD target is described and a real image of the object is reconstructed from the digitally sampled hologram by means of numerical methods.
Related Papers (5)