scispace - formally typeset
BookDOI

Distributed Consensus in Multi-vehicle Cooperative Control

Wei Ren, +1 more
Reads0
Chats0
TLDR
In this article, the authors present a survey of the use of consensus algorithms in multi-vehicle cooperative control, including single-and double-integrator dynamical systems, rigid-body attitude dynamics, rendezvous and axial alignment, formation control, deep-space formation flying, fire monitoring and surveillance.
Abstract
The coordinated use of autonomous vehicles has an abundance of potential applications from the domestic to the hazardously toxic. Frequently the communications necessary for the productive interplay of such vehicles may be subject to limitations in range, bandwidth, noise and other causes of unreliability. Information consensus guarantees that vehicles sharing information over a network topology have a consistent view of information critical to the coordination task. Assuming only neighbor-neighbor interaction between vehicles, Distributed Consensus in Multi-vehicle Cooperative Control develops distributed consensus strategies designed to ensure that the information states of all vehicles in a network converge to a common value. This approach strengthens the team, minimizing power consumption and the deleterious effects of range and other restrictions. The monograph is divided into six parts covering introductory, theoretical and experimental material and featuring: an overview of the use of consensus algorithms in cooperative control; consensus algorithms in single- and double-integrator dynamical systems; consensus algorithms for rigid-body attitude dynamics; rendezvous and axial alignment, formation control, deep-space formation flying, fire monitoring and surveillance. Notation drawn from graph and matrix theory and background material on linear and nonlinear system theory are enumerated in six appendices. The authors maintain a website at which can be found a sample simulation and experimental video material associated with experiments in several chapters of this book. Academic control systems researchers and their counterparts in government laboratories and robotics- and aerospace-related industries will find the ideas presented in Distributed Consensus in Multi-vehicle Cooperative Control of great interest. This text will also serve as a valuable support and reference for graduate courses in robotics, and linear and nonlinear control systems.

read more

Citations
More filters
Journal ArticleDOI

Distributed Consensus With Limited Communication Data Rate

TL;DR: It is proved that under the protocol designed, for a connected network, average consensus can be achieved with an exponential convergence rate based on merely one bit information exchange between each pair of adjacent agents at each time step.
Journal ArticleDOI

Technical communique: Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies

TL;DR: It is shown that arbitrary bounded time-delays can safely be tolerated, even though the communication structures between agents dynamically change over time and the corresponding directed graphs may not have spanning trees.
Journal ArticleDOI

Event based agreement protocols for multi-agent networks

TL;DR: An event triggering scheme is designed based on a quadratic Lyapunov function that is sampled-data and distributed in the sense that the event detector uses only neighbor information and local computation at discrete sampling instants.
Journal ArticleDOI

Secondary control of microgrids based on distributed cooperative control of multi-agent systems

TL;DR: This study proposes a secondary voltage and frequency control scheme based on the distributed cooperative control of multi-agent systems that is fully distributed such that each distributed generator only requires its own information and the information of its neighbours on the communication digraph.
Journal ArticleDOI

Distributed Coordinated Tracking With a Dynamic Leader for Multiple Euler-Lagrange Systems

TL;DR: In this note, a distributed coordinated tracking problem for multiple networked Euler-Lagrange systems is studied and a distributed continuous estimator and an adaptive control law to account for parametric uncertainties are proposed.
References
More filters
Journal ArticleDOI

Coordination of groups of mobile autonomous agents using nearest neighbor rules

TL;DR: A theoretical explanation for the observed behavior of the Vicsek model, which proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function.
Journal ArticleDOI

Novel Type of Phase Transition in a System of Self-Driven Particles

TL;DR: Numerical evidence is presented that this model results in a kinetic phase transition from no transport to finite net transport through spontaneous symmetry breaking of the rotational symmetry.
Journal ArticleDOI

Information flow and cooperative control of vehicle formations

TL;DR: A Nyquist criterion is proved that uses the eigenvalues of the graph Laplacian matrix to determine the effect of the communication topology on formation stability, and a method for decentralized information exchange between vehicles is proposed.
Journal ArticleDOI

Multi-vehicle consensus with a time-varying reference state

TL;DR: This paper first analyzes a consensus algorithm with a constant reference state using graph theoretical tools, then proposes consensus algorithms with a time-varying reference state and shows necessary and sufficient conditions under which consensus is reached on the time-Varyingreference state.
Journal ArticleDOI

Consensus strategies for cooperative control of vehicle formations

TL;DR: In this article, a consensus-based formation control strategy is proposed to guarantee accurate formation maintenance in the general case of arbitrary (directed) information flow between vehicles as long as certain mild conditions are satisfied.
Related Papers (5)