scispace - formally typeset
Open AccessPosted Content

Efficient Attribute Injection for Pretrained Language Models.

Reads0
Chats0
TLDR
This paper propose a lightweight and memory-efficient method to inject attributes to PLMs, which uses low-rank approximations and hypercomplex multiplications to limit the increase of parameters especially when the attribute vocabulary is large, and introduces training mechanisms to handle domains in which attributes can be multi-labeled or sparse.
Abstract
Metadata attributes (e.g., user and product IDs from reviews) can be incorporated as additional inputs to neural-based NLP models, by modifying the architecture of the models, in order to improve their performance. Recent models however rely on pretrained language models (PLMs), where previously used techniques for attribute injection are either nontrivial or ineffective. In this paper, we propose a lightweight and memory-efficient method to inject attributes to PLMs. We extend adapters, i.e. tiny plug-in feed-forward modules, to include attributes both independently of or jointly with the text. To limit the increase of parameters especially when the attribute vocabulary is large, we use low-rank approximations and hypercomplex multiplications, significantly decreasing the total parameters. We also introduce training mechanisms to handle domains in which attributes can be multi-labeled or sparse. Extensive experiments and analyses on eight datasets from different domains show that our method outperforms previous attribute injection methods and achieves state-of-the-art performance on various datasets.

read more

References
More filters
Proceedings Article

Attention is All you Need

TL;DR: This paper proposed a simple network architecture based solely on an attention mechanism, dispensing with recurrence and convolutions entirely and achieved state-of-the-art performance on English-to-French translation.
Proceedings ArticleDOI

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

TL;DR: BERT as mentioned in this paper pre-trains deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers, which can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks.
Posted Content

RoBERTa: A Robustly Optimized BERT Pretraining Approach

TL;DR: It is found that BERT was significantly undertrained, and can match or exceed the performance of every model published after it, and the best model achieves state-of-the-art results on GLUE, RACE and SQuAD.
Journal ArticleDOI

Representation Learning: A Review and New Perspectives

TL;DR: Recent work in the area of unsupervised feature learning and deep learning is reviewed, covering advances in probabilistic models, autoencoders, manifold learning, and deep networks.
Proceedings Article

Efficient Estimation of Word Representations in Vector Space

TL;DR: Two novel model architectures for computing continuous vector representations of words from very large data sets are proposed and it is shown that these vectors provide state-of-the-art performance on the authors' test set for measuring syntactic and semantic word similarities.
Related Papers (5)