scispace - formally typeset
Open AccessPosted Content

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TLDR
Faster R-CNN as discussed by the authors proposes a Region Proposal Network (RPN) to generate high-quality region proposals, which are used by Fast R-NN for detection.
Abstract
State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet and Fast R-CNN have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features---using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model, our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.

read more

Citations
More filters
Posted Content

DetNet: A Backbone network for Object Detection.

TL;DR: State-of-the-art results have been obtained for both object detection and instance segmentation on the MSCOCO benchmark based on the DetNet~(4.8G FLOPs) backbone.
Journal ArticleDOI

Fruit Recognition from Images Using Deep Learning

TL;DR: In this paper, a dataset of images containing fruits is introduced and a neural network is trained to detect fruits. But the authors discuss the reason why they chose to use fruits in this project by proposing a few applications that could use this kind of neural network.
Posted Content

Bounding Box Regression with Uncertainty for Accurate Object Detection.

TL;DR: A novel bounding box regression loss that greatly improves the localization accuracies of various architectures with nearly no additional computation and allows us to merge neighboring bounding boxes during non-maximum suppression (NMS), which further improves the globalization performance.
Proceedings ArticleDOI

Weighted-Entropy-Based Quantization for Deep Neural Networks

TL;DR: This paper proposes a novel method for quantizing weights and activations based on the concept of weighted entropy, which achieves significant reductions in both the model size and the amount of computation with minimal accuracy loss.
Proceedings ArticleDOI

Toward Driving Scene Understanding: A Dataset for Learning Driver Behavior and Causal Reasoning

TL;DR: The Honda Research Institute Driving Dataset (HDD) as discussed by the authors is a dataset of 104 hours of real human driving in the San Francisco Bay Area collected using an instrumented vehicle equipped with different sensors.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Related Papers (5)