scispace - formally typeset
Open AccessPosted Content

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TLDR
Faster R-CNN as discussed by the authors proposes a Region Proposal Network (RPN) to generate high-quality region proposals, which are used by Fast R-NN for detection.
Abstract
State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet and Fast R-CNN have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features---using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model, our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.

read more

Citations
More filters
Journal ArticleDOI

Survey on semantic segmentation using deep learning techniques

TL;DR: A survey of semantic segmentation methods by categorizing them into ten different classes according to the common concepts underlying their architectures, and providing an overview of the publicly available datasets on which they have been assessed.
Proceedings ArticleDOI

Edge Assisted Real-time Object Detection for Mobile Augmented Reality

TL;DR: This work designs a system that enables high accuracy object detection for commodity AR/MR system running at 60fps, employs low latency offloading techniques, decouples the rendering pipeline from the offloading pipeline, and uses a fast object tracking method to maintain detection accuracy.
Book ChapterDOI

Online Multi-Object Tracking with Dual Matching Attention Networks

TL;DR: This paper introduces a cost-sensitive tracking loss based on the state-of-the-art visual tracker which encourages the model to focus on hard negative distractors during online learning and proposes Dual Matching Attention Networks (DMAN) with both spatial and temporal attention mechanisms.
Posted Content

Detect to Track and Track to Detect

TL;DR: In this article, the authors proposed a ConvNet architecture for simultaneous detection and tracking, using a multi-task objective for frame-based object detection and across-frame track regression, and introduced correlation features that represent object co-occurrences across time to aid the ConvNet during tracking.
Journal ArticleDOI

DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning

TL;DR: Using DeepLesion, a universal lesion detector is trained that can find all types of lesions with one unified framework and achieves a sensitivity of 81.1% with five false positives per image.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Related Papers (5)