scispace - formally typeset
Open AccessPosted Content

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TLDR
Faster R-CNN as discussed by the authors proposes a Region Proposal Network (RPN) to generate high-quality region proposals, which are used by Fast R-NN for detection.
Abstract
State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet and Fast R-CNN have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features---using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model, our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.

read more

Citations
More filters
Proceedings ArticleDOI

Car Detection using Unmanned Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3

TL;DR: In this paper, the authors investigated the performance of two state-of-the-art CNN algorithms, namely Faster R-CNN and YOLOv3, in the context of car detection from aerial images.
Journal ArticleDOI

Motion Segmentation & Multiple Object Tracking by Correlation Co-Clustering

TL;DR: This work states this joint problem as a co-clustering problem that is principled and tractable by existing algorithms, and demonstrates the effectiveness of this approach by combining bottom-up motion segmentation by grouping of point trajectories with high-level multiple object tracking by clustering of bounding boxes.
Proceedings ArticleDOI

Deep Self-Taught Learning for Weakly Supervised Object Localization

TL;DR: Li et al. as mentioned in this paper proposed a self-taught learning approach, which makes the detector learn the object-level features reliable for acquiring tight positive samples and afterwards re-train itself based on them.
Posted Content

Attention Branch Network: Learning of Attention Mechanism for Visual Explanation

TL;DR: Zhang et al. as discussed by the authors proposed Attention Branch Network (ABN), which extends the top-down visual explanation model by introducing a branch structure with an attention mechanism and is trainable for the visual explanation and image recognition in end-to-end manner.
Posted Content

Deep Matching Prior Network: Toward Tighter Multi-oriented Text Detection

TL;DR: Wang et al. as discussed by the authors proposed a new CNN based method, named Deep Matching Prior Network (DMPNet), to detect text with tighter quadrangle, which uses quadrilateral sliding windows in several specific intermediate convolutional layers to roughly recall the text with higher overlapping area and then a shared Monte-Carlo method is proposed for fast and accurate computing of the polygonal areas.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Related Papers (5)