scispace - formally typeset
Open AccessPosted Content

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TLDR
Faster R-CNN as discussed by the authors proposes a Region Proposal Network (RPN) to generate high-quality region proposals, which are used by Fast R-NN for detection.
Abstract
State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet and Fast R-CNN have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features---using the recently popular terminology of neural networks with 'attention' mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model, our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.

read more

Citations
More filters
Posted Content

3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans

TL;DR: 3D-SIS as mentioned in this paper combines 2D and 3D feature learning for object detection and instance segmentation, achieving state-of-the-art performance on both synthetic and real-world public benchmarks.
Posted Content

Panoptic Segmentation

TL;DR: Panoptic segmentation as discussed by the authors unifies the typically distinct tasks of semantic segmentation and instance segmentation, and proposes a novel panoptic quality (PQ) metric that captures performance for all classes (stuff and things) in an interpretable and unified manner.
Posted Content

Augmentation for small object detection

TL;DR: This work analyzes the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO, and shows that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold.
Proceedings ArticleDOI

Weakly Supervised Complementary Parts Models for Fine-Grained Image Classification From the Bottom Up

TL;DR: This paper builds complementary parts models in a weakly supervised manner to retrieve information suppressed by dominant object parts detected by convolutional neural networks and builds a bi-directional long short-term memory (LSTM) network to fuze and encode the partial information of these complementary parts into a comprehensive feature for image classification.
Journal ArticleDOI

Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans

TL;DR: This work couple the modeling of the anatomy appearance and the object search in a unified behavioral framework, using the capabilities of deep reinforcement learning and multi-scale image analysis, and significantly outperforms state-of-the-art solutions on detecting several anatomical structures with no failed cases from a clinical acceptance perspective.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Related Papers (5)