scispace - formally typeset
Open accessJournal ArticleDOI: 10.1371/JOURNAL.PBIO.3001031

Functional innovation promotes diversification of form in the evolution of an ultrafast trap-jaw mechanism in ants.

02 Mar 2021-PLOS Biology (Public Library of Science)-Vol. 19, Iss: 3
Abstract: Evolutionary innovations underlie the rise of diversity and complexity-the 2 long-term trends in the history of life. How does natural selection redesign multiple interacting parts to achieve a new emergent function? We investigated the evolution of a biomechanical innovation, the latch-spring mechanism of trap-jaw ants, to address 2 outstanding evolutionary problems: how form and function change in a system during the evolution of new complex traits, and whether such innovations and the diversity they beget are repeatable in time and space. Using a new phylogenetic reconstruction of 470 species, and X-ray microtomography and high-speed videography of representative taxa, we found the trap-jaw mechanism evolved independently 7 to 10 times in a single ant genus (Strumigenys), resulting in the repeated evolution of diverse forms on different continents. The trap mechanism facilitates a 6 to 7 order of magnitude greater mandible acceleration relative to simpler ancestors, currently the fastest recorded acceleration of a resettable animal movement. We found that most morphological diversification occurred after evolution of latch-spring mechanisms, which evolved via minor realignments of mouthpart structures. This finding, whereby incremental changes in form lead to a change of function, followed by large morphological reorganization around the new function, provides a model for understanding the evolution of complex biomechanical traits, as well as insights into why such innovations often happen repeatedly.

... read more


9 results found

Open accessJournal ArticleDOI: 10.1093/IOB/OBAB027
01 Jan 2021-
Abstract: To capture prey otherwise unattainable by muscle function alone, some animal lineages have evolved movements that are driven by stored elastic energy, producing movements of remarkable speed and force. One such example that has evolved multiple times is a trap-jaw mechanism, in which the mouthparts of an animal are loaded with energy as they open to a wide gape and then, when triggered to close, produce a terrific force. Within the spiders (Araneae), this type of attack has thus far solely been documented in the palpimanoid family Mecysmaucheniidae but a similar morphology has also been observed in the distantly related araneoid subfamily Pararchaeinae, leading to speculation of a trap-jaw attack in that lineage as well. Here, using high-speed videography, we test whether cheliceral strike power output suggests elastic-driven movements in the pararchaeine Pararchaea alba. The strike speed attained places P. alba as a moderately fast striker exceeding the slowest mecysmaucheniids, but failing to the reach the most extreme high-speed strikers that have elastic-driven mechanisms. Using microcomputed tomography, we compare the morphology of P. alba chelicerae in the resting and open positions, and their related musculature, and based on results propose a mechanism for cheliceral strike function that includes a torque reversal latching mechanism. Similar to the distantly related trap-jaw mecysmaucheniid spiders, the unusual prosoma morphology in P. alba seemingly allows for highly maneuverable chelicerae with a much wider gape than typical spiders, suggesting that increasingly maneuverable joints coupled with a latching mechanism may serve as a precursor to elastic-driven movements.

... read more

Open accessJournal ArticleDOI: 10.1002/JMOR.21410
Abstract: Ants are highly polyphenic Hymenoptera, with at least three distinct adult forms in the vast majority of species. Their sexual dimorphism, however, is overlooked to the point of being a nearly forgotten phenomenon. Using a multimodal approach, we interrogate the near total head microanatomy of the male of Dorylus helvolus, the "sausagefly," and compare it with the conspecific or near-conspecific female castes, the "driver ants." We found that no specific features were shared uniquely between the workers and males to the exclusion of the queens, indicating independence of male and worker development; males and queens, however, uniquely shared several features. Certain previous generalizations about ant sexual dimorphism are confirmed, while we also discover discrete muscular presences and absences, for which reason we provide a coarse characterization of functional morphology. Based on the unexpected retention of a medial carinate line on the structurally simplified mandible of the male, we postulate a series of developmental processes to explain the patterning of ant mandibles. We invoke functional and anatomical principles to classify sensilla. Critically, we observe an inversion of the expected pattern of male-queen mandible development: male Dorylus mandibles are extremely large while queen mandibles are poorly developed. To explain this, we posit that the reproductive-limited mandible phenotype is canalized in Dorylus, thus partially decoupling the queen and worker castes. We discuss alternative hypotheses and provide further comparisons to understand mandibular evolution in army ants. Furthermore, we hypothesize that the expression of the falcate phenotype in the queen is coincidental, that is, a "spandrel," and that the form of male mandibles is also generally coincidental across the ants. We conclude that the theory of ant development and evolution is incomplete without consideration of the male system, and we call for focused study of male anatomy and morphogenesis, and of trait limitation across all castes.

... read more

Topics: Dorylus (61%), Mandible (arthropod mouthpart) (51%)

Open accessJournal ArticleDOI: 10.1098/RSIF.2021.0424
Frederik Püffel1, Anaya Pouget1, Xinyue Liu1, Marcus Zuber2  +3 moreInstitutions (3)
Abstract: The extraordinary success of social insects is partially based on division of labour, i.e. individuals exclusively or preferentially perform specific tasks. Task preference may correlate with morph...

... read more

Topics: Bite force quotient (54%)

Open accessPosted ContentDOI: 10.1101/2021.08.17.456653
Bertone Ma1, Gibson Jc2, Seago Ae3, Yoshida T4  +1 moreInstitutions (5)
17 Aug 2021-bioRxiv
Abstract: Larval insects use many methods for locomotion. Here we describe a previously unknown jumping behavior in a group of beetle larvae (Coleoptera: Laemophloeidae). We analyze and describe this behavior in Laemophloeus biguttatus and provide information on similar observations for another laemophloeid species, Placonotus testaceus. Laemophloeus biguttatus larvae prelude jumps by arching their body while gripping the substrate with their legs over a period of 0.22 {+/-} 0.17s. This is followed by a rapid ventral curling of the body after the larvae releases its grip that launches them into the air. Larvae reached takeoff velocities of 0.47 {+/-} 0.15 m s-1 and traveled 11.2 {+/-} 2.8 mm (1.98 {+/-} 0.8 body lengths) horizontally and 7.9 {+/-} 4.3 mm (1.5 {+/-} 0.9 body lengths) vertically during their jumps. Conservative estimates of power output revealed that not all jumps can be explained by direct muscle power alone, suggesting Laemophloeus biguttatus uses a latch-mediated spring actuation mechanism (LaMSA) in which interaction between the larvaes legs and the substrate serves as the latch. MicroCT scans and SEM imaging of larvae did not reveal any notable modifications that would aid in jumping. Although more in-depth experiments could not be performed to test hypotheses on the function of these jumps, we posit that this behavior is used for rapid locomotion which is energetically more efficient than crawling the same distance to disperse from their ephemeral habitat. We also summarize and discuss jumping behaviors among insect larvae for additional context of this behavior in laemophloeid beetles.

... read more


59 results found

Open accessJournal Article
01 Jan 2014-MSOR connections
Abstract: Copyright (©) 1999–2012 R Foundation for Statistical Computing. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the R Core Team.

... read more

Topics: R Programming Language (78%)

229,202 Citations

Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTU170
Anthony Bolger1, Marc Lohse1, Bjoern Usadel1Institutions (1)
01 Aug 2014-Bioinformatics
Abstract: Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at Contact: ed.nehcaa-htwr.1oib@ledasu Supplementary information: Supplementary data are available at Bioinformatics online.

... read more

26,464 Citations

Open accessJournal ArticleDOI: 10.1186/1471-2148-7-214
Alexei J. Drummond1, Andrew Rambaut2Institutions (2)
Abstract: The evolutionary analysis of molecular sequence variation is a statistical enterprise. This is reflected in the increased use of probabilistic models for phylogenetic inference, multiple sequence alignment, and molecular population genetics. Here we present BEAST: a fast, flexible software architecture for Bayesian analysis of molecular sequences related by an evolutionary tree. A large number of popular stochastic models of sequence evolution are provided and tree-based models suitable for both within- and between-species sequence data are implemented. BEAST version 1.4.6 consists of 81000 lines of Java source code, 779 classes and 81 packages. It provides models for DNA and protein sequence evolution, highly parametric coalescent analysis, relaxed clock phylogenetics, non-contemporaneous sequence data, statistical alignment and a wide range of options for prior distributions. BEAST source code is object-oriented, modular in design and freely available at under the GNU LGPL license. BEAST is a powerful and flexible evolutionary analysis package for molecular sequence variation. It also provides a resource for the further development of new models and statistical methods of evolutionary analysis.

... read more

11,140 Citations

Open accessJournal ArticleDOI: 10.1111/J.2041-210X.2011.00169.X
Abstract: Summary 1. Here, I present a new, multifunctional phylogenetics package, phytools, for the R statistical computing environment. 2. The focus of the package is on methods for phylogenetic comparative biology; however, it also includes tools for tree inference, phylogeny input/output, plotting, manipulation and several other tasks. 3. I describe and tabulate the major methods implemented in phytools, and in addition provide some demonstration of its use in the form of two illustrative examples. 4. Finally, I conclude by briefly describing an active web-log that I use to document present and future developments for phytools. I also note other web resources for phylogenetics in the R computational environment.

... read more

4,710 Citations

Open accessJournal ArticleDOI: 10.1093/MOLBEV/MSS020
Abstract: In phylogenetic analyses of molecular sequence data, partitioning involves estimating independent models of molecular evolution for different sets of sites in a sequence alignment. Choosing an appropriate partitioning scheme is an important step in most analyses because it can affect the accuracy of phylogenetic reconstruction. Despite this, partitioning schemes are often chosen without explicit statistical justification. Here, we describe two new objective methods for the combined selection of best-fit partitioning schemes and nucleotide substitution models. These methods allow millions of partitioning schemes to be compared in realistic time frames and so permit the objective selection of partitioning schemes even for large multilocus DNA data sets. We demonstrate that these methods significantly outperform previous approaches, including both the ad hoc selection of partitioning schemes (e.g., partitioning by gene or codon position) and a recently proposed hierarchical clustering method. We have implemented these methods in an open-source program, PartitionFinder. This program allows users to select partitioning schemes and substitution models using a range of information-theoretic metrics (e.g., the Bayesian information criterion, akaike information criterion [AIC], and corrected AIC). We hope that PartitionFinder will encourage the objective selection of partitioning schemes and thus lead to improvements in phylogenetic analyses. PartitionFinder is written in Python and runs under Mac OSX 10.4 and above. The program, source code, and a detailed manual are freely available from

... read more

Topics: Bayesian information criterion (54%), Akaike information criterion (53%), Model selection (52%) ... read more

4,347 Citations

No. of citations received by the Paper in previous years