scispace - formally typeset
Open Access

Improved Subgrid-scale Models for Large-Eddy Simulation

TLDR
In this article, the authors analyzed models for subgrid-scale turbulence and showed that the kinetic energy of small-scale motions can be decomposed into two parts: one results from the large scales and is correlated with them, and the other part is uncorrelated which leads to a two-component eddy-viscosity model.
Abstract
The paper analyzes models for subgrid-scale turbulence. The analysis indicates that there is sufficient information in the resolved scales to determine some characteristics of the complete flow field. The kinetic energy of the small-scale motions can be decomposed into two parts: one results from the large scales and is correlated with them, and the other part is uncorrelated which leads to a two-component eddy-viscosity model. The 'production equals dissipation' argument does not apply to the small scales in the decay of turbulence because it does not account for the uncorrelated component. The exchange between the large and small scales takes place mainly between the smallest scales of the former and the largest scales of the latter; this argument is the basis of a new model shown to be superior to the Smagorinsky model (1963).

read more

Citations
More filters
Journal ArticleDOI

Scale-Invariance and Turbulence Models for Large-Eddy Simulation

TL;DR: In this article, a review of scale-invariance properties of high-Reynolds-number turbulence in the inertial range is presented, focusing on dynamic and similarity subgrid models and evaluating how well these models reproduce the true impact of the small scales on large scale physics and how they perform in numerical simulations.
Journal ArticleDOI

A Lagrangian dynamic subgrid-scale model of turbulence

TL;DR: In this paper, the Smagorinsky eddy-viscosity model is combined with a spatially averaged dynamic model for complex-geometry inhomogeneous flows, and a new dynamic model formulation is introduced that combines advantages of the statistical and local approaches.
Journal ArticleDOI

Dynamics and stability of lean-premixed swirl-stabilized combustion

TL;DR: A comprehensive review of the advances made over the past two decades in this area is provided in this article, where various swirl injector configurations and related flow characteristics, including vortex breakdown, precessing vortex core, large-scale coherent structures, and liquid fuel atomization and spray formation are discussed.
Journal ArticleDOI

On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet

TL;DR: In this paper, the properties of turbulence subgrid-scale stresses are studied using experimental data in the far field of a round jet, at a Reynolds number of Rλ ≈ 310.
References
More filters
Journal ArticleDOI

General circulation experiments with the primitive equations

TL;DR: In this article, an extended period numerical integration of a baroclinic primitive equation model has been made for the simulation and the study of the dynamics of the atmosphere's general circulation, and the solution corresponding to external gravitational propagation is filtered by requiring the vertically integrated divergence to vanish identically.
Book

A First Course in Turbulence

TL;DR: In this paper, the authors present a reference record created on 2005-11-18, modified on 2016-08-08 and used for the analysis of turbulence and transport in the context of energie.
Book

The theory of homogeneous turbulence

TL;DR: In this article, the kinematics of the field of homogeneous turbulence and the universal equilibrium theory of decay of the energy-containing eddies are discussed. But the authors focus on the dynamics of decay and not on the probability distribution of u(x).
Journal ArticleDOI

A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers

TL;DR: In this article, the three-dimensional, primitive equations of motion have been integrated numerically in time for the case of turbulent, plane Poiseuille flow at very large Reynolds numbers.
Journal ArticleDOI

Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli

TL;DR: In this paper, the finite difference procedure and the subgrid scale (SGS) motion model are used to simulate high Reynolds number turbulent flows of incompressible fluids in plane channels and annuli, and the boundary conditions are formulated in a manner consistent with the SGS theory.