scispace - formally typeset
Open Access

Improved turbulence models based on large eddy simulation of homogeneous, incompressible turbulent flows

TLDR
In this paper, a subgrid scale similarity model is developed that can account for system rotation and the main effect of rotation is to increase the transverse length scales in the rotation direction, and thereby decrease the rates of dissipation.
Abstract
The physical bases of large eddy simulation and subgrid modeling are studied. A subgrid scale similarity model is developed that can account for system rotation. Large eddy simulations of homogeneous shear flows with system rotation were carried out. Apparently contradictory experimental results were explained. The main effect of rotation is to increase the transverse length scales in the rotation direction, and thereby decrease the rates of dissipation. Experimental results are shown to be affected by conditions at the turbulence producing grid, which make the initial states a function of the rotation rate. A two equation model is proposed that accounts for effects of rotation and shows good agreement with experimental results. In addition, a Reynolds stress model is developed that represents the turbulence structure of homogeneous shear flows very well and can account also for the effects of system rotation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A new k-ϵ eddy viscosity model for high reynolds number turbulent flows

TL;DR: In this article, a new k -ϵ eddy viscosity model, which consists of a new model dissipation rate equation and a new realizable eddy viscous formulation, is proposed.
Book

Spectral Methods in Fluid Dynamics

TL;DR: Spectral methods have been widely used in simulation of stability, transition, and turbulence as discussed by the authors, and their applications to both compressible and incompressible flows, to viscous as well as inviscid flows, and also to chemically reacting flows are surveyed.
Journal ArticleDOI

Development of turbulence models for shear flows by a double expansion technique

TL;DR: In this article, a two-equation model and Reynolds stress transport model are developed for turbulent shear flows and tested for homogeneous shear flow and flow over a backward facing step.
Journal ArticleDOI

New Insights into Large Eddy Simulation

TL;DR: In this paper, the authors proposed a monotone integrated large eddy simulation approach, which incorporates a form of turbulence modeling applicable when the large-scale flows of interest are intrinsically time dependent, thus throwing common statistical models into question.
Journal ArticleDOI

A dynamic mixed subgrid‐scale model and its application to turbulent recirculating flows

TL;DR: In this paper, Germano et al. proposed a new dynamic mixed model that explicitly calculates the modified Leonard term and only models the cross term and the SGS Reynolds stress, which retains favorable features of DSM and does not require that the principal axes of the stress tensor be aligned with those of the strain rate tensor.
References
More filters
Book

An Introduction to Fluid Dynamics

TL;DR: The dynamique des : fluides Reference Record created on 2005-11-18 is updated on 2016-08-08 and shows improvements in the quality of the data over the past decade.
Book

The theory of homogeneous turbulence

TL;DR: In this article, the kinematics of the field of homogeneous turbulence and the universal equilibrium theory of decay of the energy-containing eddies are discussed. But the authors focus on the dynamics of decay and not on the probability distribution of u(x).