scispace - formally typeset
Journal ArticleDOI

Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel

Reads0
Chats0
TLDR
In this paper, the influence of T-semi attached rib on the turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel was explored.
Abstract
This study aimed at exploring influence of T-semi attached rib on the turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. For this purpose, convection heat transfer of the silver-water nanofluid in a ribbed microchannel was numerically studied under a constant heat flux on upper and lower walls as well as isolated side walls. Calculations were done for a range of Reynolds numbers between 10,000 and 16,000, and in four different sorts of serrations with proportion of rib width to hole of serration width (R/W). The results of this research are presented as the coefficient of friction, Nusselt number, heat transfer coefficient and thermal efficiency, four different R/W microchannels. The results of numerical modeling showed that the fluid's convection heat transfer coefficient is increased as the Reynolds number and volume fraction of solid nanoparticle are increased. For R/W=0.5, it was also maximum for all the volume fractions of nanoparticle and different Reynolds numbers in comparison to other similar R/W situations. That's while friction coefficient, pressure drop and pumping power is maximum for serration with R/W=0 compared to other serration ratios which lead to decreased fluid-heat transfer performance.

read more

Citations
More filters
Journal ArticleDOI

Convective heat transfer of laminar nano-fluids flow through a rectangular micro-channel with different types of baffle-corrugation

TL;DR: In this paper, a detailed numerical study has been performed to investigate the thermophysical properties of the laminar nano-fluids flow through a baffle-corrugation (plane, trapezoidal, etc.).
Journal ArticleDOI

Heat transfer enhancement with channel surface roughness: A comprehensive review

TL;DR: In this article , a review of the works related to heat transfer enhancement using two types of surface roughness that are ribs and corrugations is presented, which can help in improving the performance of the system.
Journal ArticleDOI

Thermal-hydraulic analysis of Syltherm 800 thermal oil / γ-AlOOH nanofluid in a baffled shell and tube heat exchanger equipped with corrugated helical tube with two-phase approach

TL;DR: In this article , a two phase Syltherm 800 thermal oil / γ-AlOOH nanofluid flow and heat transfer in a baffled shell and tube heat exchanger equipped with corrugated helical tube numerically.
Journal ArticleDOI

A review on modelling, simulation and experiment of thermal conductivity of nanofluids

TL;DR: In this paper, the progress on the development of heat conductivity of nanofluids in recent 3 years is reported and the theory and experiment that are the focus of this work are analyzed and discuss.
Journal ArticleDOI

Analysis of buckling of a multi-layered nanocomposite rectangular plate reinforced by single-walled carbon nanotubes on elastic medium considering nonlocal theory of Eringen and variational approach

TL;DR: In this article, the buckling of a multi-layered nanocomposite rectangular plate reinforced by single-walled carbon nanotubes (SWCNTs) on Pasternak elastic medium subjected to in-plane loadings is investigated.
References
More filters
Book

Numerical heat transfer and fluid flow

TL;DR: In this article, the authors focus on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms.
Journal ArticleDOI

Two-equation eddy-viscosity turbulence models for engineering applications

TL;DR: In this paper, two new two-equation eddy-viscosity turbulence models are presented, which combine different elements of existing models that are considered superior to their alternatives.
Journal ArticleDOI

Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles

TL;DR: In this article, the authors used a Brookfield rotating viscometer to measure the viscosities of the dispersed fluids with γ-alumina (Al2O3) and titanium dioxide (TiO2) particles at a 10% volume concentration.
Journal ArticleDOI

Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. dispersion of al2o3, sio2 and tio2 ultra-fine particles

H Masuda, +2 more
- 01 Jan 1993 - 
TL;DR: In this paper, the authors proposed a new algorithm called Al2O3, which is based on the SiO2-2-SiO3 algorithm, and showed that it is more efficient than SiO3 and TiO2.
Related Papers (5)