Author
Young I. Cho
Other affiliations: California Institute of Technology, Thomas Jefferson University Hospital, Kyungpook National University ...read more
Bio: Young I. Cho is an academic researcher from Drexel University. The author has contributed to research in topic(s): Fouling & Blood viscosity. The author has an hindex of 42, co-authored 266 publication(s) receiving 12349 citation(s). Previous affiliations of Young I. Cho include California Institute of Technology & Thomas Jefferson University Hospital.
Topics: Fouling, Blood viscosity, Pressure drop, Heat exchanger, Viscosity
Papers published on a yearly basis
Papers
More filters
TL;DR: In this article, the authors used a Brookfield rotating viscometer to measure the viscosities of the dispersed fluids with γ-alumina (Al2O3) and titanium dioxide (TiO2) particles at a 10% volume concentration.
Abstract: Turbulent friction and heat transfer behaviors of dispersed fluids (i.e., uttrafine metallic oxide particles suspended in water) in a circular pipe were investigated experimentally. Viscosity measurements were also conducted using a Brookfield rotating viscometer. Two different metallic oxide particles, γ-alumina (Al2O3) and titanium dioxide (TiO2), with mean diameters of 13 and 27 nm, respectively, were used as suspended particles. The Reynolds and Prandtl numbers varied in the ranges l04-I05 and 6.5-12.3, respectively. The viscosities of the dispersed fluids with γ-Al2O3 and TiO2 particles at a 10% volume concentration were approximately 200 and 3 times greater than that of water, respectively. These viscosity results were significantly larger than the predictions from the classical theory of suspension rheology. Darcy friction factors for the dispersed fluids of the volume concentration ranging from 1% to 3% coincided well with Kays' correlation for turbulent flow of a single-phase fluid. The Nusselt n...
3,158 citations
01 Jan 1997
TL;DR: In this article, the analogy between heat and mass transfer is covered and applied in the analysis of heat transfer by conduction, convection and radiation, and the analysis is performed by using the handbook of numerical heat transfer.
Abstract: Handbook of Numerical Heat Transfer Free Full Download Links from Multiple Mirrors added by DL4W on 2015-04-10 02:13:35. Handbook of heat transfer / editors, W.M. Rohsenow, J.P. Hartnett. Y.I. Cho. m 3rd ed. p. cm. Includes bibliographical references and index. ISBN 0-07053555-8. Students investigate heat transfer by conduction, convection and radiation. The analogy between heat and mass transfer is covered and applied in the analysis.
1,642 citations
Book•
15 Aug 2003
TL;DR: Advances in Heat Transfer as mentioned in this paper provides in-depth review articles over a broader scope than in traditional journals or texts, which serve as a broad review for experts in the field and are also of great interest to non-specialists who need to keep up to date with the results of the latest research.
Abstract: Advances in Heat Transfer fills the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than in traditional journals or texts. The articles, which serve as a broad review for experts in the field are also of great interest to non-specialists who need to keep up-to-date with the results of the latest research. This serial is essential reading for all mechanical, chemical, and industrial engineers working in the field of heat transfer, or in graduate schools or industry. * Compiles the expert opinions of leaders in the industry* Fills the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than in traditional journals or texts* Essential reading for all mechanical, chemical, and industrial engineers working in the field of heat transfer, or in graduate schools or industry
1,591 citations
TL;DR: The origin of the non-Newtonian viscosity of blood was discussed in relation to the viscoelasticity and yield stress of blood.
Abstract: Effects of the non-Newtonian viscosity of blood on a flow in a coronary arterial casting of man were studied numerically using a finite element method. Various constitutive models were examined to model the non-Newtonian viscosity of blood and their model constants were summarized. A method to incorporate the non-Newtonian viscosity of blood was introduced so that the viscosity could be calculated locally. The pressure drop, wall shear stress and velocity profiles for the case of blood viscosity were compared for the case of Newtonian viscosity (0.0345 poise). The effect of the non-Newtonian viscosity of blood on the overall pressure drop across the arterial casting was found to be significant at a flow of the Reynolds number of 100 or less. Also in the region of flow separation or recirculation, the non-Newtonian viscosity of blood yields larger wall shear stress than the Newtonian case. The origin of the non-Newtonian viscosity of blood was discussed in relation to the viscoelasticity and yield stress of blood.
567 citations
TL;DR: The present paper explains how the increased blood viscosity adversely affects the microcirculation in diabetes, leading to microangiopathy.
Abstract: The objective of the present study is to review hemorheological disorders in diabetes mellitus. Several key hemorheological parameters, such as whole blood viscosity, erythrocyte deformability, and aggregation, are examined in the context of elevated blood glucose level in diabetes. The erythrocyte deformability is reduced, whereas its aggregation increases, both of which make whole blood more viscous compared to healthy individuals. The present paper explains how the increased blood viscosity adversely affects the microcirculation in diabetes, leading to microangiopathy.
175 citations
Cited by
More filters
TL;DR: In this article, an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat-transfer fluids, which are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluid, and they represent the best hope for enhancing heat transfer.
Abstract: Low thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids that are required in many industrial applications. In this paper we propose that an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat transfer fluids. The resulting {open_quotes}nanofluids{close_quotes} are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluids, and they represent the best hope for enhancement of heat transfer. The results of a theoretical study of the thermal conductivity of nanofluids with copper nanophase materials are presented, the potential benefits of the fluids are estimated, and it is shown that one of the benefits of nanofluids will be dramatic reductions in heat exchanger pumping power.
4,479 citations
TL;DR: In this article, the authors considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid and concluded that only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids.
Abstract: Nanofluids are engineered colloids made of a base fluid and nanoparticles (1-100 nm) Nanofluids have higher thermal conductivity' and single-phase heat transfer coefficients than their base fluids In particular the heat transfer coefficient increases appear to go beyond the mere thermal-conductivity effect, and cannot be predicted by traditional pure-fluid correlations such as Dittus-Boelter's In the nanofluid literature this behavior is generally attributed to thermal dispersion and intensified turbulence, brought about by nanoparticle motion To test the validity of this assumption, we have considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid These are inertia, Brownian diffusion, thermophoresis, diffusioplwresis, Magnus effect, fluid drainage, and gravity We concluded that, of these seven, only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids Based on this finding, we developed a two-component four-equation nonhomogeneous equilibrium model for mass, momentum, and heat transport in nanofluids A nondimensional analysis of the equations suggests that energy transfer by nanoparticle dispersion is negligible, and thus cannot explain the abnormal heat transfer coefficient increases Furthermore, a comparison of the nanoparticle and turbulent eddy time and length scales clearly indicates that the nanoparticles move homogeneously with the fluid in the presence of turbulent eddies so an effect on turbulence intensity is also doubtful Thus, we propose an alternative explanation for the abnormal heat transfer coefficient increases: the nanofluid properties may vary significantly within the boundary layer because of the effect of the temperature gradient and thermophoresis For a heated fluid, these effects can result in a significant decrease of viscosity within the boundary layer, thus leading to heat transfer enhancement A correlation structure that captures these effects is proposed
4,298 citations
TL;DR: In this article, the authors used a Brookfield rotating viscometer to measure the viscosities of the dispersed fluids with γ-alumina (Al2O3) and titanium dioxide (TiO2) particles at a 10% volume concentration.
Abstract: Turbulent friction and heat transfer behaviors of dispersed fluids (i.e., uttrafine metallic oxide particles suspended in water) in a circular pipe were investigated experimentally. Viscosity measurements were also conducted using a Brookfield rotating viscometer. Two different metallic oxide particles, γ-alumina (Al2O3) and titanium dioxide (TiO2), with mean diameters of 13 and 27 nm, respectively, were used as suspended particles. The Reynolds and Prandtl numbers varied in the ranges l04-I05 and 6.5-12.3, respectively. The viscosities of the dispersed fluids with γ-Al2O3 and TiO2 particles at a 10% volume concentration were approximately 200 and 3 times greater than that of water, respectively. These viscosity results were significantly larger than the predictions from the classical theory of suspension rheology. Darcy friction factors for the dispersed fluids of the volume concentration ranging from 1% to 3% coincided well with Kays' correlation for turbulent flow of a single-phase fluid. The Nusselt n...
3,158 citations
TL;DR: In this paper, the authors measured the effective thermal conductivity of mixtures of Al 2O3 and CuO, dispersed in water, vacuum pump, engine oil, and ethylene glycol.
Abstract: Effective thermal conductivity of mixtures of e uids and nanometer-size particles is measured by a steady-state parallel-plate method. The tested e uids contain two types of nanoparticles, Al 2O3 and CuO, dispersed in water, vacuum pump e uid, engine oil, and ethylene glycol. Experimental results show that the thermal conductivities of nanoparticle ‐e uid mixtures are higher than those of the base e uids. Using theoretical models of effective thermal conductivity of a mixture, we have demonstrated that the predicted thermal conductivities of nanoparticle ‐e uid mixtures are much lower than our measured data, indicating the dee ciency in the existing models when used for nanoparticle ‐e uid mixtures. Possible mechanisms contributing to enhancement of the thermal conductivity of the mixtures are discussed. A more comprehensive theory is needed to fully explain the behavior of nanoparticle ‐e uid mixtures. Nomenclature cp = specie c heat k = thermal conductivity L = thickness Pe = Peclet number P q = input power to heater 1 r = radius of particle S = cross-sectional area T = temperature U = velocity of particles relative to that of base e uids ® = ratio of thermal conductivity of particle to that of base liquid ¯ = .® i 1/=.® i 2/ ° = shear rate of e ow Ω = density A = volume fraction of particles in e uids Subscripts
1,926 citations
TL;DR: A review on fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows is presented in this article, where the authors identify opportunities for future research.
Abstract: Research in convective heat transfer using suspensions of nanometer-sized solid particles in base liquids started only over the past decade Recent investigations on nanofluids, as such suspensions are often called, indicate that the suspended nanoparticles markedly change the transport properties and heat transfer characteristics of the suspension This review summarizes recent research on fluid flow and heat transfer characteristics of nanofluids in forced and free convection flows and identifies opportunities for future research
1,814 citations