scispace - formally typeset
Journal ArticleDOI

Iron Oxide Removal from Soils and Clays by a Dithionite-Citrate System Buffered with Sodium Bicarbonate

O. P. Mehra
- 01 Feb 1958 - 
- Vol. 7, Iss: 1, pp 317-327
TLDR
In this article, the bicarbonate-buffered Na2S2O4-citrate system was used for removing free iron oxides from latosolic soils, and the least destructive of iron silicate clays.
Abstract
The oxidation potential of dithionite (Na2S2O4) increases from 0.37 V to 0.73 V with increase in pH from 6 to 9, because hydroxyl is consumed during oxidation of dithionite. At the same time the amount of iron oxide dissolved in 15 minutes falls off (from 100 percent to less than 1 percent extracted) with increase in pH from 6 to 12 owing to solubility product relationships of iron oxides. An optimum pH for maximum reaction kinetics occurs at approximately pH 7.3. A buffer is needed to hold the pH at the optimum level because 4 moles of OH are used up in reaction with each mole of Na2S2O4 oxidized. Tests show that NaHCO3 effectively serves as a buffer in this application. Crystalline hematite dissolved in amounts of several hundred milligrams in 2 min. Crystalline goethite dissolved more slowly, but dissolved during the two or three 15 min treatments normally given for iron oxide removal from soils and clays. A series of methods for the extraction of iron oxides from soils and clays was tested with soils high in free iron oxides and with nontronite and other iron-bearing clays. It was found that the bicarbonate-buffered Na2S2O4-citrate system was the most effective in removal of free iron oxides from latosolic soils, and the least destructive of iron silicate clays as indicated by least loss in cation exchange capacity after the iron oxide removal treatment. With soils the decrease was very little but with the very susceptible Woody district nontronite, the decrease was about 17 percent as contrasted to 35–80 percent with other methods.

read more

Citations
More filters
Journal ArticleDOI

Effects of vegetation type on soil resistance to erosion: Relationship between aggregate stability and shear strength

TL;DR: In this article, the effect of vegetation on both soil aggregate stability and shear strength was investigated in former croplands converted to vegetated erosion protection areas within the context of China's sloping land conversion program.
Journal ArticleDOI

The geochemistry of mercury in central amazonian soils developed on the Alter-do-Chão formation of the lower Tapajós River Valley, Pará state, Brazil

TL;DR: The sandification and podzolisation that is characteristic of the evolution of numerous pedological systems in the equatorial Amazon could be responsible for exportation of the naturally accumulated Hg by acidic complexation and migration to the black waters of the Amazon.
Journal ArticleDOI

Adsorption of lead, copper, zinc, cobalt, and cadmium by soils that differ in cation-exchange materials

TL;DR: In this paper, the adsorption of Zn2+, Pb2+, Cu2+, Co2+, and Cd2+ (M2+) by soils was measured at concentrations ranging from 10-7 to 10-2 M in 10-3 to 10 -2 M CaCI2.
Journal Article

Morphology and composition of allophane

Teruo Henmi, +1 more
TL;DR: In this paper, electron micrographs of coarse clays (0.2-2 prm) showed that allophane forms within weathered glass shards, and the content of aluminum in 4-fold coordination in alophane increased with its SiOr/AlrOB ratio and amounted to 50 percent of the total aluminum.
References
More filters
Book

Soil Chemical Analysis

TL;DR: Soil chemical analysis, Soil Chemical Analysis (SCA), this paper, is a technique for soil chemical analysis that is used in the field of Soil Chemistry and Chemical Engineering.
Journal ArticleDOI

Iron Oxide Removal from Soils and Clays1

TL;DR: In this article, a procedure is presented which employs sodium dithionite (Na2S2O4, hyposulfite, or "hydrosulfite") as the reductor, and 0.3 molar citrate with or without Fe-3 specific Versene as the chelating reagent.
Journal ArticleDOI

Removal of free iron oxide from clays