scispace - formally typeset
Journal ArticleDOI

Iron Oxide Removal from Soils and Clays by a Dithionite-Citrate System Buffered with Sodium Bicarbonate

O. P. Mehra
- 01 Feb 1958 - 
- Vol. 7, Iss: 1, pp 317-327
TLDR
In this article, the bicarbonate-buffered Na2S2O4-citrate system was used for removing free iron oxides from latosolic soils, and the least destructive of iron silicate clays.
Abstract
The oxidation potential of dithionite (Na2S2O4) increases from 0.37 V to 0.73 V with increase in pH from 6 to 9, because hydroxyl is consumed during oxidation of dithionite. At the same time the amount of iron oxide dissolved in 15 minutes falls off (from 100 percent to less than 1 percent extracted) with increase in pH from 6 to 12 owing to solubility product relationships of iron oxides. An optimum pH for maximum reaction kinetics occurs at approximately pH 7.3. A buffer is needed to hold the pH at the optimum level because 4 moles of OH are used up in reaction with each mole of Na2S2O4 oxidized. Tests show that NaHCO3 effectively serves as a buffer in this application. Crystalline hematite dissolved in amounts of several hundred milligrams in 2 min. Crystalline goethite dissolved more slowly, but dissolved during the two or three 15 min treatments normally given for iron oxide removal from soils and clays. A series of methods for the extraction of iron oxides from soils and clays was tested with soils high in free iron oxides and with nontronite and other iron-bearing clays. It was found that the bicarbonate-buffered Na2S2O4-citrate system was the most effective in removal of free iron oxides from latosolic soils, and the least destructive of iron silicate clays as indicated by least loss in cation exchange capacity after the iron oxide removal treatment. With soils the decrease was very little but with the very susceptible Woody district nontronite, the decrease was about 17 percent as contrasted to 35–80 percent with other methods.

read more

Citations
More filters
Journal ArticleDOI

Role of Fe oxides in corrosion of pipeline steel in a red clay soil

TL;DR: A series of experiments were conducted to evaluate the effect of Fe oxides on corrosion of pipeline steel in a red clay soil as discussed by the authors, and the results indicated that the corrosivity of the red clay soils greatly relieves after Fe oxide are removed from the soil.
Journal ArticleDOI

Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures

TL;DR: In this article, the effect of corn cob and rice husk biochar on P sorption and desorption in two acid (Typic Plinthustult-A & Plinthic Acrudox-B) and one neutral soil (Quartzipsamment-C).
Journal ArticleDOI

Late Pleistocene glacial chronology of the Pietrele Valley, Retezat Mountains, Southern Carpathians constrained by 10Be exposure ages and pedological investigations

TL;DR: In this paper, the authors constrain the glacial history of the Pietrele valley in the Retezat Mountains located in the Southern Carpathians and find that the timing of the late Wurmian glacial advance is asynchronous to global climate records, likely reflecting changes in moisture availability in the area.
Journal ArticleDOI

Improved methods for selective dissolution of Mn oxides: applications for studying trace element associations

TL;DR: In this paper, the association of rare earth and other trace elements with Fe and Mn oxides was studied in Fe-Mn-nodules from a lateritic soil from Serra do Navio (Northern Brazil).
References
More filters
Book

Soil Chemical Analysis

TL;DR: Soil chemical analysis, Soil Chemical Analysis (SCA), this paper, is a technique for soil chemical analysis that is used in the field of Soil Chemistry and Chemical Engineering.
Journal ArticleDOI

Iron Oxide Removal from Soils and Clays1

TL;DR: In this article, a procedure is presented which employs sodium dithionite (Na2S2O4, hyposulfite, or "hydrosulfite") as the reductor, and 0.3 molar citrate with or without Fe-3 specific Versene as the chelating reagent.
Journal ArticleDOI

Removal of free iron oxide from clays