scispace - formally typeset
Open AccessPosted Content

Learning Fine-grained Image Similarity with Deep Ranking

TLDR
A deep ranking model that employs deep learning techniques to learn similarity metric directly from images has higher learning capability than models based on hand-crafted features and deep classification models.
Abstract
Learning fine-grained image similarity is a challenging task. It needs to capture between-class and within-class image differences. This paper proposes a deep ranking model that employs deep learning techniques to learn similarity metric directly from this http URL has higher learning capability than models based on hand-crafted features. A novel multiscale network structure has been developed to describe the images effectively. An efficient triplet sampling algorithm is proposed to learn the model with distributed asynchronized stochastic gradient. Extensive experiments show that the proposed algorithm outperforms models based on hand-crafted visual features and deep classification models.

read more

Citations
More filters
Proceedings ArticleDOI

FaceNet: A unified embedding for face recognition and clustering

TL;DR: A system that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure offace similarity, and achieves state-of-the-art face recognition performance using only 128-bytes perface.
Proceedings ArticleDOI

Deep Metric Learning via Lifted Structured Feature Embedding

TL;DR: In this article, the authors propose to lift the vector of pairwise distances within the batch to the matrix of pairswise distances, which enables the algorithm to learn the state-of-the-art feature embedding by optimizing a novel structured prediction objective on the lifted problem.
Proceedings Article

Improved deep metric learning with multi-class N-pair loss objective

Kihyuk Sohn
TL;DR: This paper proposes a new metric learning objective called multi-class N-pair loss, which generalizes triplet loss by allowing joint comparison among more than one negative examples and reduces the computational burden of evaluating deep embedding vectors via an efficient batch construction strategy using only N pairs of examples.
Proceedings ArticleDOI

Person Re-identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function

TL;DR: A novel multi-channel parts-based convolutional neural network model under the triplet framework for person re-identification that significantly outperforms many state-of-the-art approaches, including both traditional and deep network-based ones, on the challenging i-LIDS, VIPeR, PRID2011 and CUHK01 datasets.
Posted Content

SphereFace: Deep Hypersphere Embedding for Face Recognition

TL;DR: This paper proposes the angular softmax (A-Softmax) loss that enables convolutional neural networks (CNNs) to learn angularly discriminative features in deep face recognition (FR) problem under open-set protocol.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

Histograms of oriented gradients for human detection

TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Proceedings ArticleDOI

Object recognition from local scale-invariant features

TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Proceedings ArticleDOI

Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories

TL;DR: This paper presents a method for recognizing scene categories based on approximate global geometric correspondence that exceeds the state of the art on the Caltech-101 database and achieves high accuracy on a large database of fifteen natural scene categories.
Posted Content

Improving neural networks by preventing co-adaptation of feature detectors

TL;DR: The authors randomly omits half of the feature detectors on each training case to prevent complex co-adaptations in which a feature detector is only helpful in the context of several other specific feature detectors.