scispace - formally typeset
Journal ArticleDOI

Learning representations by back-propagating errors

Reads0
Chats0
TLDR
Back-propagation repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector, which helps to represent important features of the task domain.
Abstract
We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector. As a result of the weight adjustments, internal ‘hidden’ units which are not part of the input or output come to represent important features of the task domain, and the regularities in the task are captured by the interactions of these units. The ability to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure1.

read more

Citations
More filters
Journal ArticleDOI

Deep convolutional neural networks for image classification: A comprehensive review

TL;DR: This review, which focuses on the application of CNNs to image classification tasks, covers their development, from their predecessors up to recent state-of-the-art deep learning systems.
Journal ArticleDOI

Introduction to neural networks.

TL;DR: This book is for non-commercial use, as long as it is distributed as a whole in its original form, and the names of the authors and the University of Amsterdam are mentioned.
Journal ArticleDOI

Phoneme recognition using time-delay neural networks

TL;DR: In this article, the authors presented a time-delay neural network (TDNN) approach to phoneme recognition, which is characterized by two important properties: (1) using a three-layer arrangement of simple computing units, a hierarchy can be constructed that allows for the formation of arbitrary nonlinear decision surfaces, which the TDNN learns automatically using error backpropagation; and (2) the time delay arrangement enables the network to discover acoustic-phonetic features and the temporal relationships between them independently of position in time and therefore not blurred by temporal shifts in the input
References
More filters
Related Papers (5)