scispace - formally typeset
Open AccessPosted Content

Learning the Markov Decision Process in the Sparse Gaussian Elimination

TLDR
Wang et al. as mentioned in this paper proposed a learning-based approach for the sparse Gaussian elimination, which recast the sparse solver into the framework of Q-learning, which could help improve the performance of sparse solvers.
Abstract
We propose a learning-based approach for the sparse Gaussian Elimination. There are many hard combinatorial optimization problems in modern sparse solver. These NP-hard problems could be handled in the framework of Markov Decision Process, especially the Q-Learning technique. We proposed some Q-Learning algorithms for the main modules of sparse solver: minimum degree ordering, task scheduling and adaptive pivoting. Finally, we recast the sparse solver into the framework of Q-Learning. Our study is the first step to connect these two classical mathematical models: Gaussian Elimination and Markov Decision Process. Our learning-based algorithm could help improve the performance of sparse solver, which has been verified in some numerical experiments.

read more

Citations
More filters
Posted Content

Fast Block Linear System Solver Using Q-Learning Schduling for Unified Dynamic Power System Simulations.

TL;DR: In this article, a fast block direct solver for the unified dynamic simulations of power systems is presented, which uses a novel Q-learning based method for task scheduling, which is 2-6 times faster than KLU.
References
More filters
Book

Reinforcement Learning: An Introduction

TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Posted Content

Semi-Supervised Classification with Graph Convolutional Networks

TL;DR: A scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs which outperforms related methods by a significant margin.
Journal ArticleDOI

Mastering the game of Go with deep neural networks and tree search

TL;DR: Using this search algorithm, the program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0.5, the first time that a computer program has defeated a human professional player in the full-sized game of Go.
Journal ArticleDOI

Reinforcement learning: a survey

TL;DR: Central issues of reinforcement learning are discussed, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state.
Proceedings Article

Asynchronous methods for deep reinforcement learning

TL;DR: A conceptually simple and lightweight framework for deep reinforcement learning that uses asynchronous gradient descent for optimization of deep neural network controllers and shows that asynchronous actor-critic succeeds on a wide variety of continuous motor control problems as well as on a new task of navigating random 3D mazes using a visual input.
Related Papers (5)