scispace - formally typeset
Journal ArticleDOI

Long-Wave Elastic Anisotropy Produced by Horizontal Layering

George E. Backus
- 01 Oct 1962 - 
- Vol. 67, Iss: 11, pp 4427-4440
Reads0
Chats0
TLDR
In this article, a horizontally layered inhomogeneous medium is considered, whose properties are constant or nearly so when averaged over some vertical height l′, and conditions on the five elastic coefficients of a homogeneous transversely isotropic medium are derived which are necessary and sufficient for the medium to be "long-wave equivalent" to a horizontally-layered inhomogenous medium.
Abstract
A horizontally layered inhomogeneous medium, isotropic or transversely isotropic, is considered, whose properties are constant or nearly so when averaged over some vertical height l′. For waves longer than l′ the medium is shown to behave like a homogeneous, or nearly homogeneous, transversely isotropic medium whose density is the average density and whose elastic coefficients are algebraic combinations of averages of algebraic combinations of the elastic coefficients of the original medium. The nearly homogeneous medium is said to be ‘long-wave equivalent’ to the original medium. Conditions on the five elastic coefficients of a homogeneous transversely isotropic medium are derived which are necessary and sufficient for the medium to be ‘long-wave equivalent’ to a horizontally layered isotropic medium. Further conditions are also derived which are necessary and sufficient for the homogeneous medium to be ‘long-wave equivalent’ to a horizontally layered isotropic medium consisting of only two different homogeneous isotropic materials. Except in singular cases, if the latter two-layered medium exists at all, its proportions and elastic coefficients are uniquely determined by the elastic coefficients of the homogeneous transversely isotropic medium. The observed variations in crustal P-wave velocity with depth, obtained from well logs, are shown to be large enough to explain some of the observed crustal anisotropies as due to layering of isotropic material.

read more

Citations
More filters
Journal ArticleDOI

Seismic observations of a complex firn structure across the Amery Ice Shelf, East Antarctica

TL;DR: In this paper, the firn structure across a suture zone on the Amery Ice Shelf, East Antarctica, and the possible role of glacier dynamics in firn evolution were investigated.
Journal ArticleDOI

Predicting macroscopic elastic rock properties requires detailed information on microstructure

TL;DR: In this paper, the authors apply 3D numerical homogenization models to estimate Young's moduli for five synthetic microstructures, and successfully validate their results for comparable geometries with the analytical Mori-Tanaka approach.
Journal ArticleDOI

PHYSICAL BOUNDS ON C13 AND δ FOR ORGANIC MUDROCKS

TL;DR: In this article, the authors derived the upper bound C13max (and hence δmax) from Postma's inequality applicable to a thin-layered effective medium composed of kerogen and inorganic phases.

Detection and Quantification of Rock Physics Properties for Improved Hydraulic Fracturing in Hydrocarbon-Bearing Shale

TL;DR: In this article, effective medium theories are invoked to estimate low-frequency elastic properties of a rock for which composition has been estimated with specific fabric properties such as load-bearing matrix, anisotropic cracks, and various shape of rock components.
Journal ArticleDOI

Body waves in a weakly anisotropic medium—I. Plane waves

TL;DR: In this article, a perturbation approach to elastic-wave processes in weakly anisotropic medium is discussed, and the limitations of perturbations are described, as well as the second-order corrections for velocity and polarization.
References
More filters
Book ChapterDOI

The Dispersion of Surface Waves on Multilayered Media

TL;DR: In this paper, a matrix formalism developed by W. T. Thomson is used to obtain the phase velocity dispersion equations for elastic surface waves of Rayleigh and Love type on multilayered solid media.
Journal ArticleDOI

Transmission of Elastic Waves through a Stratified Solid Medium

TL;DR: In this article, the transmission of a plane elastic wave at oblique incidence through a stratified solid medium consisting of any number of parallel plates of different material and thickness is studied theoretically.
Journal ArticleDOI

Sur les équations différentielles linéaires à coefficients périodiques

TL;DR: In this paper, Gauthier-Villars implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions).
Journal ArticleDOI

Wave propagation in a stratified medium

G. W. Postma
- 01 Oct 1955 - 
TL;DR: In this paper, the authors derived the wave equation from the stress-strain relations and the equation of motion, and showed that there are in general three characteristic velocities, all functions of the direction of the propagation.
Journal ArticleDOI

Elastic wave propagation in layered anisotropic media

TL;DR: In this article, the dispersion properties of transversely isotropic media were analyzed for a single solid layer in vacuo and a single layer in contact with a fluid halfspace, and the single layer solutions were generalized to n-layer media by the use of Haskell matrices.