scispace - formally typeset
Open AccessBook

Low Reynolds number hydrodynamics

TLDR
Low Reynolds number flow theory finds wide application in such diverse fields as sedimentation, fluidization, particle-size classification, dust and mist collection, filtration, centrifugation, polymer and suspension rheology, and a host of other disciplines.
Abstract
Low Reynolds number flow theory finds wide application in such diverse fields as sedimentation, fluidization, particle-size classification, dust and mist collection, filtration, centrifugation, polymer and suspension rheology, flow through porous media, colloid science, aerosol and hydrosal technology, lubrication theory, blood flow, Brownian motion, geophysics, meteorology, and a host of other disciplines. This text provides a comprehensive and detailed account of the physical and mathematical principles underlying such phenomena, heretofore available only in the original literature.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Colloid mobilization and transport in groundwater

TL;DR: In this paper, the authors present theories describing colloid mobilization, deposition, and transport, laboratory experiments in model systems designed to test these theories, and applications of these theories to colloid-facilitated transport experiments in natural groundwater systems.
Journal ArticleDOI

Lattice-Boltzmann Simulations of Particle-Fluid Suspensions

TL;DR: In this paper, a review of applications of the lattice-Boltzmann method to simulations of particle-fluid suspensions is presented, together with some of the important applications of these methods.
Journal ArticleDOI

Artificial bacterial flagella: Fabrication and magnetic control

TL;DR: ABF swimmers represent the first demonstration of microscopic artificial swimmers that use helical propulsion and are of interest in fundamental research and for biomedical applications.
Journal ArticleDOI

Sphingolipid–Cholesterol Rafts Diffuse as Small Entities in the Plasma Membrane of Mammalian Cells

TL;DR: It is demonstrated that using protein constructs with identical ectodomains and different membrane regions and vice versa provides the viscous damping of the membrane domain in the lipid bilayer to probe the dynamics and size of lipid rafts in the membrane of living cells.
Journal ArticleDOI

Boundary slip in Newtonian liquids: a review of experimental studies

TL;DR: A review of experimental studies regarding the phenomenon of slip of Newtonian liquids at solid interfaces is provided in this article, with particular attention to the effects that factors such as surface roughness, wettability and the presence of gaseous layers might have on the measured interfacial slip.