scispace - formally typeset
Journal ArticleDOI

Lubrication Models with Small to Large Slip Lengths

Reads0
Chats0
TLDR
In this paper, a set of lubrication models for thin film flow of incompressible fluids on solid substrates is derived and studied, where the models are obtained as asymptotic limits of the Navier-Stokes equations with the slip boundary condition for different orders of magnitude for the slip-length parameter.
Abstract
A set of lubrication models for the thin film flow of incompressible fluids on solid substrates is derived and studied. The models are obtained as asymptotic limits of the Navier-Stokes equations with the Navier-slip boundary condition for different orders of magnitude for the slip-length parameter. Specifically, the influence of slip on the dewetting behavior of fluids on hydrophobic substrates is investigated here. Matched asymptotics are used to describe the dynamic profiles for dewetting films and comparison is given with computational simulations. The motion of the dewetting front shows transitions from being nearly linear in time for no-slip to t 2/3 as the slip is increased. For much larger slip lengths the front motion appears to become linear again. Correspondingly, the dewetting profiles undergo a transition from oscillatory to monotone decay into the uniform film layer for large slip. Increasing the slip further, to very large values, is associated with an increasing degree of asymmetry in the structure of the dewetting ridge profile.

read more

Citations
More filters
Journal ArticleDOI

Wetting and Spreading

TL;DR: In this article, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid is examined, while the hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film.
Journal ArticleDOI

Dynamics and stability of thin liquid films

TL;DR: The dynamics and stability of thin liquid films have fascinated scientists over many decades: the observations of regular wave patterns in film flows along a windowpane or along guttering, the patterning of dewetting droplets, and the fingering of viscous flows down a slope are all examples that are familiar in daily life.
Journal ArticleDOI

Wetting Phenomena in Nanofluidics

TL;DR: In this article, the authors focus on the dynamical aspects of wetting phenomena on the nanoscale for which bulk hydrodynamic equations become invalid, including long-ranged molecular interactions such as dispersion forces, thermal fluctuations, hydrodynamical slip, segregation of mixtures and solutions at walls, and electrical double layers.
Journal ArticleDOI

Patterned deposition at moving contact lines

TL;DR: A number of recent experiments and modelling approaches are reviewed with a particular focus on mesoscopic hydrodynamic long-wave models and the conclusion highlights open question and speculates about future developments.
References
More filters
Journal ArticleDOI

Long-scale evolution of thin liquid films

TL;DR: In this article, a unified mathematical theory is presented that takes advantage of the disparity of the length scales and is based on the asymptotic procedure of reduction of the full set of governing equations and boundary conditions to a simplified, highly nonlinear, evolution equation or to a set of equations.
Journal ArticleDOI

Nonlinear dynamics and breakup of free-surface flows

TL;DR: In this article, the authors review the theoretical development of this field alongside recent experimental work, and outline unsolved problems, as well as a host of technological applications, ranging from printing to mixing and fiber spinning.
Journal ArticleDOI

Large Slip Effect at a Nonwetting Fluid-Solid Interface

TL;DR: In this paper, the authors consider the case of a drop of liquid in equilibrium with its vapor on the solid substrate, and show that when the contact angle is large enough, the boundary condition can drastically differ from a no-slip condition.
Journal ArticleDOI

Dewetting patterns and molecular forces: a reconciliation.

TL;DR: In this paper, the dewetting of thin liquid polymer films from solid surfaces was studied and a consistent picture demonstrating the interplay between short and long-range interfacial forces was provided.
Book ChapterDOI

Microfluidics: The no-slip boundary condition

TL;DR: A review of recent experimental, numerical and theoretical investigations on the subject can be found in this article, where the authors present a complex behavior at a liquid/solid interface involving an interplay of many physico-chemical parameters, including wetting, shear rate, pressure, surface charge, surface roughness, impurities and dissolved gas.
Related Papers (5)