scispace - formally typeset
Journal ArticleDOI

Microbial production of fatty-acid-derived fuels and chemicals from plant biomass

TLDR
The engineering of Escherichia coli is demonstrated to produce structurally tailored fatty esters (biodiesel), fatty alcohols, and waxes directly from simple sugars, a step towards producing these compounds directly from hemicellulose, a major component of plant-derived biomass.
Abstract
Increasing energy costs and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. Major efforts to this end are focused on the microbial production of high-energy fuels by cost-effective 'consolidated bioprocesses'. Fatty acids are composed of long alkyl chains and represent nature's 'petroleum', being a primary metabolite used by cells for both chemical and energy storage functions. These energy-rich molecules are today isolated from plant and animal oils for a diverse set of products ranging from fuels to oleochemicals. A more scalable, controllable and economic route to this important class of chemicals would be through the microbial conversion of renewable feedstocks, such as biomass-derived carbohydrates. Here we demonstrate the engineering of Escherichia coli to produce structurally tailored fatty esters (biodiesel), fatty alcohols, and waxes directly from simple sugars. Furthermore, we show engineering of the biodiesel-producing cells to express hemicellulases, a step towards producing these compounds directly from hemicellulose, a major component of plant-derived biomass.

read more

Citations
More filters
Journal ArticleDOI

Engineering the third wave of biocatalysis

TL;DR: Applications of protein-engineered biocatalysts ranging from commodity chemicals to advanced pharmaceutical intermediates that use enzyme catalysis as a key step are discussed.
Journal ArticleDOI

Catalytic Transformation of Lignin for the Production of Chemicals and Fuels

TL;DR: This paper presents a new state-of-the-art implementation of the iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Key Laborotary of Catalysis, which automates the very labor-intensive and therefore expensive and therefore time-heavy and expensive process ofalysis.
Journal ArticleDOI

Synthetic biology: applications come of age.

TL;DR: The de novo engineering of genetic circuits, biological modules and synthetic pathways is beginning to address these crucial problems and is being used in related practical applications.
Journal ArticleDOI

Microbial engineering for the production of advanced biofuels

TL;DR: Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production, and to compete with more conventional fuels.
Journal ArticleDOI

Deconstruction of lignocellulosic biomass to fuels and chemicals

TL;DR: This work focuses on overcoming recalcitrance with biochemical conversion, which uses low-severity thermochemical pretreatment followed by enzymatic hydrolysis to produce soluble sugars.
References
More filters
Book

Molecular Cloning: A Laboratory Manual

TL;DR: Molecular Cloning has served as the foundation of technical expertise in labs worldwide for 30 years as mentioned in this paper and has been so popular, or so influential, that no other manual has been more widely used and influential.
Journal ArticleDOI

One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products

TL;DR: A simple and highly efficient method to disrupt chromosomal genes in Escherichia coli in which PCR primers provide the homology to the targeted gene(s), which should be widely useful, especially in genome analysis of E. coli and other bacteria.
Journal ArticleDOI

Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels

TL;DR: Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-basedBiofuels.
Journal ArticleDOI

Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels

TL;DR: This strategy uses the host’s highly active amino acid biosynthetic pathway and diverts its 2-keto acid intermediates for alcohol synthesis to achieve high-yield, high-specificity production of isobutanol from glucose.
Related Papers (5)