scispace - formally typeset
Open AccessProceedings ArticleDOI

MIMO radar: an idea whose time has come

TLDR
It is shown that MIMO radar leads to significant performance improvement in DF accuracy, and is carried out in terms of the Cramer-Rao bound of the mean-square error in estimating the target direction.
Abstract
It has recently been shown that multiple-input multiple-output (MIMO) antenna systems have the potential to improve dramatically the performance of communication systems over single antenna systems. Unlike beamforming, which presumes a high correlation between signals either transmitted or received by an array, the MIMO concept exploits the independence between signals at the array elements. In conventional radar, target scintillations are regarded as a nuisance parameter that degrades radar performance. The novelty of MIMO radar is that it takes the opposite view; namely, it capitalizes on target scintillations to improve the radar's performance. We introduce the MIMO concept for radar. The MIMO radar system under consideration consists of a transmit array with widely-spaced elements such that each views a different aspect of the target. The array at the receiver is a conventional array used for direction finding (DF). The system performance analysis is carried out in terms of the Cramer-Rao bound of the mean-square error in estimating the target direction. It is shown that MIMO radar leads to significant performance improvement in DF accuracy.

read more

Citations
More filters
Journal ArticleDOI

MIMO Radar with Colocated Antennas

TL;DR: It is shown that the waveform diversity offered by such a MIMO radar system enables significant superiority over its phased-array counterpart, including much improved parameter identifiability, direct applicability of adaptive techniques for parameter estimation, as well as superior flexibility of transmit beampattern designs.
Journal ArticleDOI

MIMO Radar with Widely Separated Antennas

TL;DR: It is shown that with noncoherent processing, a target's RCS spatial variations can be exploited to obtain a diversity gain for target detection and for estimation of various parameters, such as angle of arrival and Doppler.
Journal ArticleDOI

Spatial Diversity in Radars—Models and Detection Performance

TL;DR: The optimal detector in the Neyman–Pearson sense is developed and analyzed for the statistical MIMO radar and it is shown that the optimal detector consists of noncoherent processing of the receiver sensors' outputs and that for cases of practical interest, detection performance is superior to that obtained through coherent processing.
Book

MIMO Radar Signal Processing

Jian Li, +1 more
TL;DR: In this paper, the authors present a generalization of the likelihood ratio test for MIMO radar, which is used for target localization in clutter-free environments, as well as to evaluate the performance of a single-input single-out (SISO) system with multiple-output (MISO) receivers.
Journal ArticleDOI

Target Detection and Localization Using MIMO Radars and Sonars

TL;DR: This paper shows that the configuration with spatially orthogonal signal transmission is equivalent to additional virtual sensors which extend the array aperture with virtual spatial tapering and provides higher performance in target detection, angular estimation accuracy, and angular resolution.
References
More filters
Journal ArticleDOI

On Limits of Wireless Communications in a Fading Environment when UsingMultiple Antennas

TL;DR: In this article, the authors examined the performance of using multi-element array (MEA) technology to improve the bit-rate of digital wireless communications and showed that with high probability extraordinary capacity is available.
Journal ArticleDOI

Space-time codes for high data rate wireless communication: performance criterion and code construction

TL;DR: In this paper, the authors consider the design of channel codes for improving the data rate and/or the reliability of communications over fading channels using multiple transmit antennas and derive performance criteria for designing such codes under the assumption that the fading is slow and frequency nonselective.
Book

Introduction to Radar Systems

TL;DR: This chapter discusses Radar Equation, MTI and Pulse Doppler Radar, and Information from Radar Signals, as well as Radar Antenna, Radar Transmitters and Radar Receiver.
Book

Optimum Array Processing

TL;DR: The present work focuses on the characterization of Space-Time Processes of Array Processing Literature and its applications to Arrays and Spatial Filters and Parameter Estimation of Adaptive Beamformers.
Journal ArticleDOI

Outdoor MIMO wireless channels: models and performance prediction

TL;DR: A new model for multiple-input-multiple-output (MIMO) outdoor wireless fading channels and their capacity performance is presented, and the existence of "pinhole" channels which exhibit low spatial fading correlation at both ends of the link but still have poor rank properties, and hence, low ergodic capacity is explained.
Related Papers (5)