scispace - formally typeset
Journal ArticleDOI

Multilayer formulation of the multiconfiguration time-dependent Hartree theory

Haobin Wang, +1 more
- 02 Jul 2003 - 
- Vol. 119, Iss: 3, pp 1289-1299
TLDR
In this paper, a multilayer formulation of the multiconfiguration time-dependent Hartree (MCTDH) theory is presented, where the single-particle (SP) functions in the original MCTDH method are further expressed employing a timedependent multi-figurational expansion, and the Dirac-Frenkel variational principle is applied to optimally determine the equations of motion.
Abstract
A multilayer (ML) formulation of the multiconfiguration time-dependent Hartree (MCTDH) theory is presented. In this new approach, the single-particle (SP) functions in the original MCTDH method are further expressed employing a time-dependent multiconfigurational expansion. The Dirac–Frenkel variational principle is then applied to optimally determine the equations of motion. Following this strategy, the SP groups are built in several layers, where each top layer SP can contain many more Cartesian degrees of freedom than in the previous formulation of the MCTDH method. As a result, the ML-MCTDH method has the capability of treating substantially more physical degrees of freedom than the original MCTDH method, and thus significantly enhances the ability of carrying out quantum dynamical simulations for complex molecular systems. The efficiency of the new formulation is demonstrated by converged quantum dynamical simulations for systems with a few hundred to a thousand degrees of freedom.

read more

Citations
More filters
Journal ArticleDOI

Multistate coupled quantum dynamics of photoexcited cytosine in gas-phase: Nonadiabatic absorption spectrum and ultrafast internal conversions

TL;DR: In this paper, a Linear Vibronic Coupling model was proposed for the absorption spectrum of Cytosine in gas phase and the relation between spectral features and the ultrafast internal conversions among its excited states.
Posted Content

Tensor Numerical Methods for High-dimensional PDEs: Basic Theory and Initial Applications

TL;DR: The grid-based tensor numerical approach for solving the 3D nonlinear Hartree-Fock eigenvalue problem is described, that was the starting point for the developments of tensor-structured numerical methods for large-scale computations in solving real-life multidimensional problems.
Journal ArticleDOI

A General Automatic Method for Optimal Construction of Matrix Product Operators Using Bipartite Graph Theory

TL;DR: This work proposes a new generic algorithm to construct the MPO of an arbitrary operator with a sum-of-products form based on the bipartite graph theory and finds that it can reproduce exactly the same MPOs as the optimally hand-crafted ones already known in the literature.
Posted Content

Topologically correct quantum nonadiabatic formalism for on-the-fly dynamics

TL;DR: This work analyzes two approaches for nonadiabatic dynamics using the time-dependent variational principle and the adiabatic representation and finds that the first approach fails to capture the geometric phase.
Journal ArticleDOI

A canonical averaging in the second-order quantized Hamilton dynamics.

TL;DR: A practical solution for generating canonical ensembles in the second-order QHD for position and momentum operators, which can be mapped onto classical phase space in doubled dimensionality and which in certain limits is equivalent to thawed Gaussian.
References
More filters
Journal ArticleDOI

Light-Induced Redox Reactions in Nanocrystalline Systems

TL;DR: A review with 156 refs on interfacial electron transfer reactions in colloidal semiconductor solns and thin films and their application for solar light energy conversion and photocatalytic water purifn is presented in this paper.
Journal ArticleDOI

Dynamics of the dissipative two-state system

TL;DR: In this article, a functional-integral approach to the dynamics of a two-state system coupled to a dissipative environment is presented, and an exact and general prescription for the reduction, under appropriate circumstances, of the problem of a system tunneling between two wells in the presence of dissipative environments to the spin-boson problem is given.
Book

Quantum Dissipative Systems

Ulrich Weiss
TL;DR: In this paper, the authors present a survey of the various approaches to Quantum-Statistical metastability, including Imaginary-Time and Real-Time Approaches Influence Functional Method Phenomenological and Microscopic System-Plus-Reservoir Models Linear and Nonlinear Quantum Environments Ohmic, Super-Ohmic, and Sub-ohmic Dissipation Quantum Decoherence and Relaxation Correlation Functions, Response Functions, and Fluctuation-Dissipation Theorem Damped Quantum Mechanical Harmonic Oscillator Quantum Brownian Motion Thermodynamic Variational
Journal ArticleDOI

The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets

TL;DR: In this article, a review of the multiconfiguration time-dependent Hartree (MCTDH) method for propagating wavepackets is given, and the formal derivation, numerical implementation, and performance of the method are detailed.
Journal ArticleDOI

Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2

TL;DR: In this article, an extension of the classical trajectory approach is proposed that may be useful in treating many types of nonadiabatic molecular collisions, where nuclei are assumed to move classically on a single potential energy surface until an avoided surface crossing or other region of large NDE coupling is reached.
Related Papers (5)