scispace - formally typeset
Journal ArticleDOI

Multilayer formulation of the multiconfiguration time-dependent Hartree theory

Haobin Wang, +1 more
- 02 Jul 2003 - 
- Vol. 119, Iss: 3, pp 1289-1299
TLDR
In this paper, a multilayer formulation of the multiconfiguration time-dependent Hartree (MCTDH) theory is presented, where the single-particle (SP) functions in the original MCTDH method are further expressed employing a timedependent multi-figurational expansion, and the Dirac-Frenkel variational principle is applied to optimally determine the equations of motion.
Abstract
A multilayer (ML) formulation of the multiconfiguration time-dependent Hartree (MCTDH) theory is presented. In this new approach, the single-particle (SP) functions in the original MCTDH method are further expressed employing a time-dependent multiconfigurational expansion. The Dirac–Frenkel variational principle is then applied to optimally determine the equations of motion. Following this strategy, the SP groups are built in several layers, where each top layer SP can contain many more Cartesian degrees of freedom than in the previous formulation of the MCTDH method. As a result, the ML-MCTDH method has the capability of treating substantially more physical degrees of freedom than the original MCTDH method, and thus significantly enhances the ability of carrying out quantum dynamical simulations for complex molecular systems. The efficiency of the new formulation is demonstrated by converged quantum dynamical simulations for systems with a few hundred to a thousand degrees of freedom.

read more

Citations
More filters
Journal ArticleDOI

Semiquantal molecular dynamics simulations of hydrogen-bond dynamics in liquid water using multi-dimensional Gaussian wave packets.

TL;DR: It is found that the anisotropy of the WPs is indispensable for reproducing the disordered H-bond network compared to the classical counterpart with the use of the potential model providing competing quantum effects between intra- and intermolecular zero-point fluctuations.
Journal ArticleDOI

On-the-Fly Symmetrical Quasi-Classical Dynamics with Meyer-Miller Mapping Hamiltonian for the Treatment of Nonadiabatic Dynamics at Conical Intersections.

TL;DR: In this paper, the on-the-fly version of the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian (SQC/MM) is implemented to study the nonadiabatic dynamics at conical intersections of polyatomic systems.
Journal ArticleDOI

The multi-configurational time-dependent Hartree approach in optimized second quantization: Imaginary time propagation and particle number conservation.

TL;DR: The multilayer multiconfigurational time-dependent Hartree (MCTDH) in optimized second quantization representation (oSQR) approach combines the tensor contraction scheme of the multilayers MCTDH approach with the use of an optimized time- dependent orbital basis.
Journal ArticleDOI

Modeling Intermolecular and Intramolecular Modes of Liquid Water Using Multiple Heat Baths: Machine Learning Approach

TL;DR: A system-bath model is introduced in which the intramolecular modes with anharmonic mode-mode couplings are described by a system Hamiltonian, while the other degrees of freedom, arising from the environmental molecules, are describing by heat bath.
Journal ArticleDOI

Quantum Dynamics Simulations of Excited State Energy Transfer in a Zinc-Free-Base Porphyrin Dyad.

TL;DR: To successfully simulate the EET process, it is important to include coupling between nuclear and electronic degrees of freedom in the QD simulation, account for Coulomb coupling between the electron and hole wavepackets, and parametrize the extended Hückel model Hamiltonian employed in theQD simulations with respect to the DFT.
References
More filters
Journal ArticleDOI

Light-Induced Redox Reactions in Nanocrystalline Systems

TL;DR: A review with 156 refs on interfacial electron transfer reactions in colloidal semiconductor solns and thin films and their application for solar light energy conversion and photocatalytic water purifn is presented in this paper.
Journal ArticleDOI

Dynamics of the dissipative two-state system

TL;DR: In this article, a functional-integral approach to the dynamics of a two-state system coupled to a dissipative environment is presented, and an exact and general prescription for the reduction, under appropriate circumstances, of the problem of a system tunneling between two wells in the presence of dissipative environments to the spin-boson problem is given.
Book

Quantum Dissipative Systems

Ulrich Weiss
TL;DR: In this paper, the authors present a survey of the various approaches to Quantum-Statistical metastability, including Imaginary-Time and Real-Time Approaches Influence Functional Method Phenomenological and Microscopic System-Plus-Reservoir Models Linear and Nonlinear Quantum Environments Ohmic, Super-Ohmic, and Sub-ohmic Dissipation Quantum Decoherence and Relaxation Correlation Functions, Response Functions, and Fluctuation-Dissipation Theorem Damped Quantum Mechanical Harmonic Oscillator Quantum Brownian Motion Thermodynamic Variational
Journal ArticleDOI

The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets

TL;DR: In this article, a review of the multiconfiguration time-dependent Hartree (MCTDH) method for propagating wavepackets is given, and the formal derivation, numerical implementation, and performance of the method are detailed.
Journal ArticleDOI

Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2

TL;DR: In this article, an extension of the classical trajectory approach is proposed that may be useful in treating many types of nonadiabatic molecular collisions, where nuclei are assumed to move classically on a single potential energy surface until an avoided surface crossing or other region of large NDE coupling is reached.
Related Papers (5)