scispace - formally typeset
Open AccessProceedings Article

Off-Policy Deep Reinforcement Learning without Exploration

Reads0
Chats0
TLDR
This paper introduces a novel class of off-policy algorithms, batch-constrained reinforcement learning, which restricts the action space in order to force the agent towards behaving close to on-policy with respect to a subset of the given data.
Abstract
Many practical applications of reinforcement learning constrain agents to learn from a fixed batch of data which has already been gathered, without offering further possibility for data collection. In this paper, we demonstrate that due to errors introduced by extrapolation, standard off-policy deep reinforcement learning algorithms, such as DQN and DDPG, are incapable of learning with data uncorrelated to the distribution under the current policy, making them ineffective for this fixed batch setting. We introduce a novel class of off-policy algorithms, batch-constrained reinforcement learning, which restricts the action space in order to force the agent towards behaving close to on-policy with respect to a subset of the given data. We present the first continuous control deep reinforcement learning algorithm which can learn effectively from arbitrary, fixed batch data, and empirically demonstrate the quality of its behavior in several tasks.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems

TL;DR: This tutorial article aims to provide the reader with the conceptual tools needed to get started on research on offline reinforcement learning algorithms: reinforcementlearning algorithms that utilize previously collected data, without additional online data collection.
Posted Content

Conservative Q-Learning for Offline Reinforcement Learning

TL;DR: Conservative Q-learning (CQL) is proposed, which aims to address limitations of offline RL methods by learning a conservative Q-function such that the expected value of a policy under this Q- function lower-bounds its true value.
Journal ArticleDOI

Toward Causal Representation Learning

TL;DR: The authors reviewed fundamental concepts of causal inference and related them to crucial open problems of machine learning, including transfer and generalization, thereby assaying how causality can contribute to modern machine learning research.
Journal Article

D4RL: Datasets for Deep Data-Driven Reinforcement Learning

TL;DR: This work introduces benchmarks specifically designed for the offline setting, guided by key properties of datasets relevant to real-world applications of offline RL, and releases benchmark tasks and datasets with a comprehensive evaluation of existing algorithms and an evaluation protocol together with an open-source codebase.
Posted Content

Decision Transformer: Reinforcement Learning via Sequence Modeling

TL;DR: Despite its simplicity, Decision Transformer matches or exceeds the performance of state-of-the-art model-free offline RL baselines on Atari, OpenAI Gym, and Key-to-Door tasks.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Proceedings Article

Auto-Encoding Variational Bayes

TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Journal ArticleDOI

Learning to Predict by the Methods of Temporal Differences

Richard S. Sutton
- 01 Aug 1988 - 
TL;DR: This article introduces a class of incremental learning procedures specialized for prediction – that is, for using past experience with an incompletely known system to predict its future behavior – and proves their convergence and optimality for special cases and relation to supervised-learning methods.

Deep reinforcement learning with double Q-learning

TL;DR: In this article, the authors show that the DQN algorithm suffers from substantial overestimation in some games in the Atari 2600 domain, and they propose a specific adaptation to the algorithm and show that this algorithm not only reduces the observed overestimations, but also leads to much better performance on several games.
Related Papers (5)