scispace - formally typeset
Open AccessJournal ArticleDOI

On dense granular flows.

Reads0
Chats0
TLDR
A quantitative comparison between data coming from different experiments in the same geometry identifies the robust features in each case and a transverse analysis of the data across the different configurations allows to identify the relevant dimensionless parameters, the different flow regimes and to propose simple interpretations.
Abstract
The behaviour of dense assemblies of dry grains submitted to continuous shear deformation has been the subject of many experiments and discrete particle simulations. This paper is a collective work carried out among the French research group Groupement de Recherche Milieux Divises (GDR MiDi). It proceeds from the collection of results on steady uniform granular flows obtained by different groups in six different geometries both in experiments and numerical works. The goal is to achieve a coherent presentation of the relevant quantities to be measured i.e. flowing thresholds, kinematic profiles, effective friction, etc. First, a quantitative comparison between data coming from different experiments in the same geometry identifies the robust features in each case. Second, a transverse analysis of the data across the different configurations, allows us to identify the relevant dimensionless parameters, the different flow regimes and to propose simple interpretations. The present work, more than a simple juxtaposition of results, demonstrates the richness of granular flows and underlines the open problem of defining a single rheology.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Internal states of model isotropic granular packings. II. Compression and pressure cycles.

TL;DR: Initial low P states with high coordination numbers lose many contacts in a compression cycle and end up with values of z and x_(0) close to those of the most poorly coordinated initial configurations, which significantly affect contact networks of granular packings in quasistatic conditions.
Journal ArticleDOI

Towards a theoretical picture of dense granular flows down inclines

TL;DR: An organized, synthetic review of phenomena and a characterization of the state of understanding of granular flow is provided, focusing on dense granular flows over three kinds of inclined surfaces: flat-frictional, bumpy-f restrictive and erodible.
Journal ArticleDOI

Closure relations for shallow granular flows from particle simulations

TL;DR: In this article, the Discrete Particle Method (DPM) is used to model granular flows down an inclined chute, and a shallow-layer model is completed with macro-scale closure relations obtained from micro-scale DPM simulations of steady flows.

On Dense Granular Flows Down Flat Frictional Inclines

Abstract: We consider dense, relatively shallow flows of 3 mm glass spheres moving down a chute with a flat, frictional base of 3.6 m length. Sustained flows are observed at inclinations corresponding to an effective friction between the static and dynamic friction of individual grains. A capacitance instrument records the formation of waves with a dominant component traveling upstream. Simultaneous measurements of granular temperature at the base using a load cell reveal that the waves are accompanied by substantial reduction in granular agitation. A theory incorporating contributions from impulsive and enduring interactions with the base produces quantitative predictions for the range of sustained flows observed in the experiments. Closure of the theory is achieved using a balance between the production and dissipation of angular momentum in a narrow basal shear layer. A linear stability analysis of the corresponding hydraulic equations further suggests the origin of the waves.
Journal ArticleDOI

Scaling of discrete element model parameters for cohesionless and cohesive solid

TL;DR: In this paper, the scaling of model parameters that is necessary to produce scale independent predictions for cohesionless and cohesive solid under quasi-static simulation of confined compression and unconfined compression to failure in uniaxial test was investigated.
References
More filters
Journal ArticleDOI

Dynamics of viscoplastic deformation in amorphous solids

TL;DR: In this article, a dynamical theory of low-temperature shear deformation in amorphous solids is proposed based on molecular-dynamics simulations of a two-dimensional, two-component non-crystalline system.
Journal ArticleDOI

Rapid granular flows

TL;DR: In this article, the authors present a review of the fluid-like behavior of granular solids and, in particular, those flows for which the material is rapidly sheared, and discuss various modeling techniques used to describe the motion of the bulk material.
Book

Statics and Kinematics of Granular Materials

TL;DR: In this article, Coulomb's method of wedges and differential slices were used to determine the stress and strain rate of Coulomb material, and the conical yield function was used to predict mass flow rate.
Journal ArticleDOI

Granular flow down an inclined plane: Bagnold scaling and rheology

TL;DR: A systematic, large-scale simulation study of granular media in two and three dimensions, investigating the rheology of cohesionless granular particles in inclined plane geometries, finds that a steady-state flow regime exists in which the energy input from gravity balances that dissipated from friction and inelastic collisions is found.
Related Papers (5)