scispace - formally typeset
Open AccessJournal ArticleDOI

Rheophysics of dense granular materials: Discrete simulation of plane shear flows

Frédéric da Cruz, +4 more
- 31 Aug 2005 - 
- Vol. 72, Iss: 2, pp 021309-021309
Reads0
Chats0
TLDR
From those dilatancy and friction laws, the constitutive law for dense granular flows is deduced, with a plastic Coulomb term and a viscous Bagnold term, for the limit of rigid grains.
Abstract
We study the plane shear flow of a dense assembly of dissipative disks using discrete simulation and prescribing the pressure and the shear rate. Those shear states are steady and uniform, and become intermittent in the quasistatic regime. In the limit of rigid grains, the shear state is determined by a single dimensionless number, called the inertial number I , which describes the ratio of inertial to pressure forces. Small values of I correspond to the quasistatic critical state of soil mechanics, while large values of I correspond to the fully collisional regime of kinetic theory. When I increases in the intermediate dense flow regime, we measure an approximately linear decrease of the solid fraction from the maximum packing value, and an approximately linear increase of the effective friction coefficient from the static internal friction value. From those dilatancy and friction laws, we deduce the constitutive law for dense granular flows, with a plastic Coulomb term and a viscous Bagnold term. The mechanical characteristics of the grains (restitution, friction, and elasticity) have a small influence in the dense flow regime. Finally, we show that the evolution of the relative velocity fluctuations and of the contact force anisotropy as a function of I provides a simple explanation of the friction law.

read more

Citations
More filters
Journal ArticleDOI

A constitutive law for dense granular flows

TL;DR: The results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.
Journal ArticleDOI

Heating and weakening of faults during earthquake slip

TL;DR: In this article, the authors suggest that the most relevant weakening processes in large crustal events are thermal, and to involve thermal pressurization of pore fluid within and adjacent to the deforming fault core, which reduces the effective normal stress and hence also the shear strength for a given friction coefficient.
Journal ArticleDOI

Flows of Dense Granular Media

TL;DR: In this article, the existence of a dense flow regime characterized by enduring contacts is discussed, and results from experiments and simulations in different configurations support a description in terms of a frictional visco-plastic constitutive law.
Journal ArticleDOI

Unifying suspension and granular rheology.

TL;DR: Dense suspension and granular media are unified under a common framework and the results are shown to be compatible with classical empirical models of suspension rheology and provide a clear determination of constitutive laws close to the jamming transition.
References
More filters
Book

Computer Simulation of Liquids

TL;DR: In this paper, the gear predictor -corrector is used to calculate forces and torques in a non-equilibrium molecular dynamics simulation using Monte Carlo methods. But it is not suitable for the gear prediction problem.
Journal Article

Discrete numerical model for granular assemblies.

Peter Cundall, +1 more
- 01 Jan 1979 - 
TL;DR: The distinct element method as mentioned in this paper is a numerical model capable of describing the mechanical behavior of assemblies of discs and spheres and is based on the use of an explicit numerical scheme in which the interaction of the particles is monitored contact by contact and the motion of the objects modelled particle by particle.
Journal ArticleDOI

A discrete numerical model for granular assemblies

Peter Cundall, +1 more
- 01 Mar 1979 - 
TL;DR: The distinct element method as mentioned in this paper is a numerical model capable of describing the mechanical behavior of assemblies of discs and spheres and is based on the use of an explicit numerical scheme in which the interaction of the particles is monitored contact by contact and the motion of the objects modelled particle by particle.
MonographDOI

Contact Mechanics: Frontmatter

K. L. Johnson
Related Papers (5)