scispace - formally typeset
Open AccessDissertation

Parallel Sparse Linear Algebra for Homotopy Methods

Reads0
Chats0
TLDR
It is shown that the efficiency of linear system solution by the adaptive GMRES(k) algorithm depends on the change in problem difficulty when the problem is scaled, as concluded analytically and experimentally.
Abstract
Globally convergent homotopy methods are used to solve difficult nonlinear systems of equations by tracking the zero curve of a homotopy map. Homotopy curve tracking involves solving a sequence of linear systems, which often vary greatly in difficulty. In this research, a popular iterative solution tool, GMRES(k), is adapted to deal with the sequence of such systems. The proposed adaptive strategy of GMRES(k) allows tuning of the restart parameter k based on the GMRES convergence rate for the given problem. Adaptive GMRES(k) is shown to be superior to several other iterative techniques on analog circuit simulation problems and on postbuckling structural analysis problems. Developing parallel techniques for robust but expensive sequential computations, such as globally convergent homotopy methods, is important. The design of these techniques encompasses the functionality of the iterative method (adaptive GMRES(k)) implemented sequentially and is based on the results of a parallel performance analysis of several implementations. An implementation of adaptive GMRES(k) with Householder reflections in its orthogonalization phase is developed. It is shown that the efficiency of linear system solution by the adaptive GMRES(k) algorithm depends on the change in problem difficulty when the problem is scaled. In contrast, a standard GMRES(k) implementation using Householder reflections maintains a constant efficiency with increase in problem size and number of processors, as concluded analytically and experimentally. The supporting numerical results are obtained on three distributed memory homogeneous parallel architectures: CRAY T3E, Intel Paragon, and IBM SP2.

read more

Citations
More filters
Journal ArticleDOI

Scalability Analysis of Parallel GMRES Implementations

TL;DR: Two parallel versions of GMRES(k) based on different data distributions and using Householder reflections in the orthogonalization phase are analyzed with respect to scalability (their ability to maintain fixed efficiency with an increase in problem size and number of processors).
Journal ArticleDOI

Seleção Dinâmica da Dimensão do Subespaço de Krylov no Método GMRES(m) e suas Variantes

TL;DR: In this article, algoritmos adaptativos do Metodo do Residuo Minimo Generalizado (GMRES) were used to solve sistemas of equacoes lineares.
References
More filters
Book

Matrix computations

Gene H. Golub
Book

Iterative Methods for Sparse Linear Systems

Yousef Saad
TL;DR: This chapter discusses methods related to the normal equations of linear algebra, and some of the techniques used in this chapter were derived from previous chapters of this book.
Journal ArticleDOI

GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems

TL;DR: An iterative method for solving linear systems, which has the property of minimizing at every step the norm of the residual vector over a Krylov subspace.
Book

Introduction to Graph Theory

TL;DR: In this article, the authors introduce the concept of graph coloring and propose a graph coloring algorithm based on the Eulers formula for k-chromatic graphs, which can be seen as a special case of the graph coloring problem.
Journal ArticleDOI

BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems

TL;DR: Numerical experiments indicate that the new variant of Bi-CG, named Bi- CGSTAB, is often much more efficient than CG-S, so that in some cases rounding errors can even result in severe cancellation effects in the solution.
Related Papers (5)